Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1 * weight + 116
This means that on average for every extra kilogram weight a rider loses -1 positions in the result.
Bagdonas
1
78 kgMihaylov
4
70 kgGate
6
71 kgRichardson
7
75 kgGoesinnen
8
75 kgArchbold
10
79 kgMcCann
14
73 kgNorris
19
67 kgLampier
32
68 kgBennett
44
73 kgMcNally
45
72 kgBiałobłocki
47
79 kgHorton
48
70 kgIrvine
52
80 kgGuardiola
57
65 kgO'Loughlin
58
68 kgMatzka
60
69 kgUchima
68
63 kgDunne
71
88 kgYates
77
58 kgVasilyev
80
70 kgRyan
144
72 kg
1
78 kgMihaylov
4
70 kgGate
6
71 kgRichardson
7
75 kgGoesinnen
8
75 kgArchbold
10
79 kgMcCann
14
73 kgNorris
19
67 kgLampier
32
68 kgBennett
44
73 kgMcNally
45
72 kgBiałobłocki
47
79 kgHorton
48
70 kgIrvine
52
80 kgGuardiola
57
65 kgO'Loughlin
58
68 kgMatzka
60
69 kgUchima
68
63 kgDunne
71
88 kgYates
77
58 kgVasilyev
80
70 kgRyan
144
72 kg
Weight (KG) →
Result →
88
58
1
144
# | Rider | Weight (KG) |
---|---|---|
1 | BAGDONAS Gediminas | 78 |
4 | MIHAYLOV Nikolay | 70 |
6 | GATE Aaron | 71 |
7 | RICHARDSON Simon | 75 |
8 | GOESINNEN Floris | 75 |
10 | ARCHBOLD Shane | 79 |
14 | MCCANN David | 73 |
19 | NORRIS Lachlan | 67 |
32 | LAMPIER Steven | 68 |
44 | BENNETT Sam | 73 |
45 | MCNALLY Mark | 72 |
47 | BIAŁOBŁOCKI Marcin | 79 |
48 | HORTON Tobyn | 70 |
52 | IRVINE Martyn | 80 |
57 | GUARDIOLA Salvador | 65 |
58 | O'LOUGHLIN David | 68 |
60 | MATZKA Ralf | 69 |
68 | UCHIMA Kohei | 63 |
71 | DUNNE Conor | 88 |
77 | YATES Adam | 58 |
80 | VASILYEV Maksym | 70 |
144 | RYAN Fergus | 72 |