Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.1 * weight + 213
This means that on average for every extra kilogram weight a rider loses -2.1 positions in the result.
Bennett
2
73 kgArchbold
4
79 kgHorton
5
70 kgMatzka
6
69 kgMcCann
10
73 kgBagdonas
12
78 kgBiałobłocki
13
79 kgLampier
26
68 kgMcNally
28
72 kgMihaylov
38
70 kgRichardson
39
75 kgGate
48
71 kgUchima
55
63 kgGoesinnen
58
75 kgNorris
60
67 kgVasilyev
63
70 kgO'Loughlin
72
68 kgIrvine
84
80 kgDunne
104
88 kgOrr
140
74 kgGuardiola
158
65 kgRyan
166
72 kgYates
169
58 kg
2
73 kgArchbold
4
79 kgHorton
5
70 kgMatzka
6
69 kgMcCann
10
73 kgBagdonas
12
78 kgBiałobłocki
13
79 kgLampier
26
68 kgMcNally
28
72 kgMihaylov
38
70 kgRichardson
39
75 kgGate
48
71 kgUchima
55
63 kgGoesinnen
58
75 kgNorris
60
67 kgVasilyev
63
70 kgO'Loughlin
72
68 kgIrvine
84
80 kgDunne
104
88 kgOrr
140
74 kgGuardiola
158
65 kgRyan
166
72 kgYates
169
58 kg
Weight (KG) →
Result →
88
58
2
169
| # | Rider | Weight (KG) |
|---|---|---|
| 2 | BENNETT Sam | 73 |
| 4 | ARCHBOLD Shane | 79 |
| 5 | HORTON Tobyn | 70 |
| 6 | MATZKA Ralf | 69 |
| 10 | MCCANN David | 73 |
| 12 | BAGDONAS Gediminas | 78 |
| 13 | BIAŁOBŁOCKI Marcin | 79 |
| 26 | LAMPIER Steven | 68 |
| 28 | MCNALLY Mark | 72 |
| 38 | MIHAYLOV Nikolay | 70 |
| 39 | RICHARDSON Simon | 75 |
| 48 | GATE Aaron | 71 |
| 55 | UCHIMA Kohei | 63 |
| 58 | GOESINNEN Floris | 75 |
| 60 | NORRIS Lachlan | 67 |
| 63 | VASILYEV Maksym | 70 |
| 72 | O'LOUGHLIN David | 68 |
| 84 | IRVINE Martyn | 80 |
| 104 | DUNNE Conor | 88 |
| 140 | ORR Robert | 74 |
| 158 | GUARDIOLA Salvador | 65 |
| 166 | RYAN Fergus | 72 |
| 169 | YATES Adam | 58 |