Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3 * weight + 278
This means that on average for every extra kilogram weight a rider loses -3 positions in the result.
Bagdonas
1
78 kgArchbold
2
79 kgHorton
6
70 kgMihaylov
9
70 kgGoesinnen
14
75 kgRichardson
18
75 kgGate
20
71 kgMcCann
22
73 kgDunne
27
88 kgBennett
32
73 kgIrvine
33
80 kgLampier
38
68 kgMcNally
46
72 kgNorris
55
67 kgO'Loughlin
62
68 kgYates
82
58 kgOrr
86
74 kgGuardiola
117
65 kgBiałobłocki
124
79 kgVasilyev
126
70 kgUchima
132
63 kgMatzka
135
69 kgRyan
150
72 kg
1
78 kgArchbold
2
79 kgHorton
6
70 kgMihaylov
9
70 kgGoesinnen
14
75 kgRichardson
18
75 kgGate
20
71 kgMcCann
22
73 kgDunne
27
88 kgBennett
32
73 kgIrvine
33
80 kgLampier
38
68 kgMcNally
46
72 kgNorris
55
67 kgO'Loughlin
62
68 kgYates
82
58 kgOrr
86
74 kgGuardiola
117
65 kgBiałobłocki
124
79 kgVasilyev
126
70 kgUchima
132
63 kgMatzka
135
69 kgRyan
150
72 kg
Weight (KG) →
Result →
88
58
1
150
# | Rider | Weight (KG) |
---|---|---|
1 | BAGDONAS Gediminas | 78 |
2 | ARCHBOLD Shane | 79 |
6 | HORTON Tobyn | 70 |
9 | MIHAYLOV Nikolay | 70 |
14 | GOESINNEN Floris | 75 |
18 | RICHARDSON Simon | 75 |
20 | GATE Aaron | 71 |
22 | MCCANN David | 73 |
27 | DUNNE Conor | 88 |
32 | BENNETT Sam | 73 |
33 | IRVINE Martyn | 80 |
38 | LAMPIER Steven | 68 |
46 | MCNALLY Mark | 72 |
55 | NORRIS Lachlan | 67 |
62 | O'LOUGHLIN David | 68 |
82 | YATES Adam | 58 |
86 | ORR Robert | 74 |
117 | GUARDIOLA Salvador | 65 |
124 | BIAŁOBŁOCKI Marcin | 79 |
126 | VASILYEV Maksym | 70 |
132 | UCHIMA Kohei | 63 |
135 | MATZKA Ralf | 69 |
150 | RYAN Fergus | 72 |