Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.1 * weight - 107
This means that on average for every extra kilogram weight a rider loses 2.1 positions in the result.
Mihaylov
1
70 kgGoesinnen
5
75 kgBagdonas
6
78 kgGuardiola
7
65 kgGate
8
71 kgRichardson
9
75 kgUchima
16
63 kgBennett
17
73 kgHorton
20
70 kgVasilyev
23
70 kgYates
26
58 kgLampier
27
68 kgMcCann
43
73 kgArchbold
45
79 kgMcNally
47
72 kgNorris
51
67 kgBiałobłocki
54
79 kgMatzka
61
69 kgOrr
93
74 kgIrvine
104
80 kgDunne
105
88 kgO'Loughlin
107
68 kgRyan
141
72 kg
1
70 kgGoesinnen
5
75 kgBagdonas
6
78 kgGuardiola
7
65 kgGate
8
71 kgRichardson
9
75 kgUchima
16
63 kgBennett
17
73 kgHorton
20
70 kgVasilyev
23
70 kgYates
26
58 kgLampier
27
68 kgMcCann
43
73 kgArchbold
45
79 kgMcNally
47
72 kgNorris
51
67 kgBiałobłocki
54
79 kgMatzka
61
69 kgOrr
93
74 kgIrvine
104
80 kgDunne
105
88 kgO'Loughlin
107
68 kgRyan
141
72 kg
Weight (KG) →
Result →
88
58
1
141
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | MIHAYLOV Nikolay | 70 |
| 5 | GOESINNEN Floris | 75 |
| 6 | BAGDONAS Gediminas | 78 |
| 7 | GUARDIOLA Salvador | 65 |
| 8 | GATE Aaron | 71 |
| 9 | RICHARDSON Simon | 75 |
| 16 | UCHIMA Kohei | 63 |
| 17 | BENNETT Sam | 73 |
| 20 | HORTON Tobyn | 70 |
| 23 | VASILYEV Maksym | 70 |
| 26 | YATES Adam | 58 |
| 27 | LAMPIER Steven | 68 |
| 43 | MCCANN David | 73 |
| 45 | ARCHBOLD Shane | 79 |
| 47 | MCNALLY Mark | 72 |
| 51 | NORRIS Lachlan | 67 |
| 54 | BIAŁOBŁOCKI Marcin | 79 |
| 61 | MATZKA Ralf | 69 |
| 93 | ORR Robert | 74 |
| 104 | IRVINE Martyn | 80 |
| 105 | DUNNE Conor | 88 |
| 107 | O'LOUGHLIN David | 68 |
| 141 | RYAN Fergus | 72 |