Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 20
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Bagdonas
1
78 kgArchbold
2
79 kgGate
7
71 kgGuardiola
9
65 kgBennett
12
73 kgYates
14
58 kgMihaylov
20
70 kgNorris
26
67 kgLampier
29
68 kgRichardson
34
75 kgGoesinnen
35
75 kgMcCann
37
73 kgHorton
38
70 kgMatzka
47
69 kgMcNally
54
72 kgIrvine
79
80 kgDunne
81
88 kgO'Loughlin
90
68 kgUchima
101
63 kgBiałobłocki
106
79 kgVasilyev
126
70 kgRyan
151
72 kgOrr
160
74 kg
1
78 kgArchbold
2
79 kgGate
7
71 kgGuardiola
9
65 kgBennett
12
73 kgYates
14
58 kgMihaylov
20
70 kgNorris
26
67 kgLampier
29
68 kgRichardson
34
75 kgGoesinnen
35
75 kgMcCann
37
73 kgHorton
38
70 kgMatzka
47
69 kgMcNally
54
72 kgIrvine
79
80 kgDunne
81
88 kgO'Loughlin
90
68 kgUchima
101
63 kgBiałobłocki
106
79 kgVasilyev
126
70 kgRyan
151
72 kgOrr
160
74 kg
Weight (KG) →
Result →
88
58
1
160
# | Rider | Weight (KG) |
---|---|---|
1 | BAGDONAS Gediminas | 78 |
2 | ARCHBOLD Shane | 79 |
7 | GATE Aaron | 71 |
9 | GUARDIOLA Salvador | 65 |
12 | BENNETT Sam | 73 |
14 | YATES Adam | 58 |
20 | MIHAYLOV Nikolay | 70 |
26 | NORRIS Lachlan | 67 |
29 | LAMPIER Steven | 68 |
34 | RICHARDSON Simon | 75 |
35 | GOESINNEN Floris | 75 |
37 | MCCANN David | 73 |
38 | HORTON Tobyn | 70 |
47 | MATZKA Ralf | 69 |
54 | MCNALLY Mark | 72 |
79 | IRVINE Martyn | 80 |
81 | DUNNE Conor | 88 |
90 | O'LOUGHLIN David | 68 |
101 | UCHIMA Kohei | 63 |
106 | BIAŁOBŁOCKI Marcin | 79 |
126 | VASILYEV Maksym | 70 |
151 | RYAN Fergus | 72 |
160 | ORR Robert | 74 |