Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 112
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Horton
2
70 kgArchbold
6
79 kgGate
7
71 kgBagdonas
9
78 kgMatzka
10
69 kgYates
13
58 kgMcCann
14
73 kgLampier
18
68 kgDunne
21
88 kgGoesinnen
35
75 kgIrvine
36
80 kgBiałobłocki
49
79 kgRichardson
55
75 kgMihaylov
62
70 kgNorris
66
67 kgGuardiola
74
65 kgO'Loughlin
75
68 kgUchima
79
63 kgMcNally
80
72 kgVasilyev
84
70 kgBennett
95
73 kgRyan
136
72 kgOrr
156
74 kg
2
70 kgArchbold
6
79 kgGate
7
71 kgBagdonas
9
78 kgMatzka
10
69 kgYates
13
58 kgMcCann
14
73 kgLampier
18
68 kgDunne
21
88 kgGoesinnen
35
75 kgIrvine
36
80 kgBiałobłocki
49
79 kgRichardson
55
75 kgMihaylov
62
70 kgNorris
66
67 kgGuardiola
74
65 kgO'Loughlin
75
68 kgUchima
79
63 kgMcNally
80
72 kgVasilyev
84
70 kgBennett
95
73 kgRyan
136
72 kgOrr
156
74 kg
Weight (KG) →
Result →
88
58
2
156
# | Rider | Weight (KG) |
---|---|---|
2 | HORTON Tobyn | 70 |
6 | ARCHBOLD Shane | 79 |
7 | GATE Aaron | 71 |
9 | BAGDONAS Gediminas | 78 |
10 | MATZKA Ralf | 69 |
13 | YATES Adam | 58 |
14 | MCCANN David | 73 |
18 | LAMPIER Steven | 68 |
21 | DUNNE Conor | 88 |
35 | GOESINNEN Floris | 75 |
36 | IRVINE Martyn | 80 |
49 | BIAŁOBŁOCKI Marcin | 79 |
55 | RICHARDSON Simon | 75 |
62 | MIHAYLOV Nikolay | 70 |
66 | NORRIS Lachlan | 67 |
74 | GUARDIOLA Salvador | 65 |
75 | O'LOUGHLIN David | 68 |
79 | UCHIMA Kohei | 63 |
80 | MCNALLY Mark | 72 |
84 | VASILYEV Maksym | 70 |
95 | BENNETT Sam | 73 |
136 | RYAN Fergus | 72 |
156 | ORR Robert | 74 |