Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 149
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Białobłocki
1
79 kgNorris
8
67 kgMcCann
9
73 kgArchbold
10
79 kgRichardson
13
75 kgBagdonas
14
78 kgGoesinnen
17
75 kgGate
18
71 kgMihaylov
19
70 kgBennett
54
73 kgYates
64
58 kgLampier
65
68 kgVasilyev
78
70 kgO'Loughlin
83
68 kgIrvine
85
80 kgGuardiola
86
65 kgMcNally
97
72 kgMatzka
101
69 kgDunne
113
88 kgUchima
115
63 kgHorton
132
70 kgRyan
139
72 kg
1
79 kgNorris
8
67 kgMcCann
9
73 kgArchbold
10
79 kgRichardson
13
75 kgBagdonas
14
78 kgGoesinnen
17
75 kgGate
18
71 kgMihaylov
19
70 kgBennett
54
73 kgYates
64
58 kgLampier
65
68 kgVasilyev
78
70 kgO'Loughlin
83
68 kgIrvine
85
80 kgGuardiola
86
65 kgMcNally
97
72 kgMatzka
101
69 kgDunne
113
88 kgUchima
115
63 kgHorton
132
70 kgRyan
139
72 kg
Weight (KG) →
Result →
88
58
1
139
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | BIAŁOBŁOCKI Marcin | 79 |
| 8 | NORRIS Lachlan | 67 |
| 9 | MCCANN David | 73 |
| 10 | ARCHBOLD Shane | 79 |
| 13 | RICHARDSON Simon | 75 |
| 14 | BAGDONAS Gediminas | 78 |
| 17 | GOESINNEN Floris | 75 |
| 18 | GATE Aaron | 71 |
| 19 | MIHAYLOV Nikolay | 70 |
| 54 | BENNETT Sam | 73 |
| 64 | YATES Adam | 58 |
| 65 | LAMPIER Steven | 68 |
| 78 | VASILYEV Maksym | 70 |
| 83 | O'LOUGHLIN David | 68 |
| 85 | IRVINE Martyn | 80 |
| 86 | GUARDIOLA Salvador | 65 |
| 97 | MCNALLY Mark | 72 |
| 101 | MATZKA Ralf | 69 |
| 113 | DUNNE Conor | 88 |
| 115 | UCHIMA Kohei | 63 |
| 132 | HORTON Tobyn | 70 |
| 139 | RYAN Fergus | 72 |