Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 17
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Irvine
1
80 kgMatzka
2
69 kgLampier
9
68 kgBiałobłocki
10
79 kgMcCann
12
73 kgGuardiola
15
65 kgRichardson
18
75 kgGate
23
71 kgGoesinnen
27
75 kgMihaylov
29
70 kgHorton
30
70 kgVasilyev
44
70 kgArchbold
51
79 kgO'Loughlin
52
68 kgNorris
55
67 kgBagdonas
67
78 kgMcNally
69
72 kgUchima
74
63 kgBennett
79
73 kgYates
82
58 kgRyan
94
72 kgDunne
145
88 kg
1
80 kgMatzka
2
69 kgLampier
9
68 kgBiałobłocki
10
79 kgMcCann
12
73 kgGuardiola
15
65 kgRichardson
18
75 kgGate
23
71 kgGoesinnen
27
75 kgMihaylov
29
70 kgHorton
30
70 kgVasilyev
44
70 kgArchbold
51
79 kgO'Loughlin
52
68 kgNorris
55
67 kgBagdonas
67
78 kgMcNally
69
72 kgUchima
74
63 kgBennett
79
73 kgYates
82
58 kgRyan
94
72 kgDunne
145
88 kg
Weight (KG) →
Result →
88
58
1
145
# | Rider | Weight (KG) |
---|---|---|
1 | IRVINE Martyn | 80 |
2 | MATZKA Ralf | 69 |
9 | LAMPIER Steven | 68 |
10 | BIAŁOBŁOCKI Marcin | 79 |
12 | MCCANN David | 73 |
15 | GUARDIOLA Salvador | 65 |
18 | RICHARDSON Simon | 75 |
23 | GATE Aaron | 71 |
27 | GOESINNEN Floris | 75 |
29 | MIHAYLOV Nikolay | 70 |
30 | HORTON Tobyn | 70 |
44 | VASILYEV Maksym | 70 |
51 | ARCHBOLD Shane | 79 |
52 | O'LOUGHLIN David | 68 |
55 | NORRIS Lachlan | 67 |
67 | BAGDONAS Gediminas | 78 |
69 | MCNALLY Mark | 72 |
74 | UCHIMA Kohei | 63 |
79 | BENNETT Sam | 73 |
82 | YATES Adam | 58 |
94 | RYAN Fergus | 72 |
145 | DUNNE Conor | 88 |