Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.2 * weight + 211
This means that on average for every extra kilogram weight a rider loses -2.2 positions in the result.
Archbold
2
79 kgMatzka
6
69 kgDunne
16
88 kgRichardson
17
75 kgBagdonas
18
78 kgLampier
21
68 kgBiałobłocki
26
79 kgGoesinnen
29
75 kgNorris
32
67 kgGate
34
71 kgO'Loughlin
39
68 kgGuardiola
48
65 kgMihaylov
49
70 kgMcNally
63
72 kgIrvine
67
80 kgUchima
70
63 kgHorton
95
70 kgYates
104
58 kgBennett
110
73 kgVasilyev
117
70 kgRyan
123
72 kg
2
79 kgMatzka
6
69 kgDunne
16
88 kgRichardson
17
75 kgBagdonas
18
78 kgLampier
21
68 kgBiałobłocki
26
79 kgGoesinnen
29
75 kgNorris
32
67 kgGate
34
71 kgO'Loughlin
39
68 kgGuardiola
48
65 kgMihaylov
49
70 kgMcNally
63
72 kgIrvine
67
80 kgUchima
70
63 kgHorton
95
70 kgYates
104
58 kgBennett
110
73 kgVasilyev
117
70 kgRyan
123
72 kg
Weight (KG) →
Result →
88
58
2
123
# | Rider | Weight (KG) |
---|---|---|
2 | ARCHBOLD Shane | 79 |
6 | MATZKA Ralf | 69 |
16 | DUNNE Conor | 88 |
17 | RICHARDSON Simon | 75 |
18 | BAGDONAS Gediminas | 78 |
21 | LAMPIER Steven | 68 |
26 | BIAŁOBŁOCKI Marcin | 79 |
29 | GOESINNEN Floris | 75 |
32 | NORRIS Lachlan | 67 |
34 | GATE Aaron | 71 |
39 | O'LOUGHLIN David | 68 |
48 | GUARDIOLA Salvador | 65 |
49 | MIHAYLOV Nikolay | 70 |
63 | MCNALLY Mark | 72 |
67 | IRVINE Martyn | 80 |
70 | UCHIMA Kohei | 63 |
95 | HORTON Tobyn | 70 |
104 | YATES Adam | 58 |
110 | BENNETT Sam | 73 |
117 | VASILYEV Maksym | 70 |
123 | RYAN Fergus | 72 |