Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3.2 * weight + 284
This means that on average for every extra kilogram weight a rider loses -3.2 positions in the result.
Białobłocki
1
79 kgBaldo
3
73 kgBagdonas
4
78 kgRichardson
5
75 kgEefting-Bloem
12
75 kgAregger
16
70 kgLang
19
73 kgKrotký
20
73 kgBichlmann
31
72 kgFumeaux
46
61 kgSmith
49
67 kgMcconvey
51
67 kgCraven
59
75 kgMcCann
72
73 kgNorman Leth
81
75 kgVingerling
86
75 kgIrvine
89
80 kgGullen
101
65 kgBennett
112
73 kgSchäfer
140
66 kgO'Loughlin
143
68 kg
1
79 kgBaldo
3
73 kgBagdonas
4
78 kgRichardson
5
75 kgEefting-Bloem
12
75 kgAregger
16
70 kgLang
19
73 kgKrotký
20
73 kgBichlmann
31
72 kgFumeaux
46
61 kgSmith
49
67 kgMcconvey
51
67 kgCraven
59
75 kgMcCann
72
73 kgNorman Leth
81
75 kgVingerling
86
75 kgIrvine
89
80 kgGullen
101
65 kgBennett
112
73 kgSchäfer
140
66 kgO'Loughlin
143
68 kg
Weight (KG) →
Result →
80
61
1
143
# | Rider | Weight (KG) |
---|---|---|
1 | BIAŁOBŁOCKI Marcin | 79 |
3 | BALDO Nicolas | 73 |
4 | BAGDONAS Gediminas | 78 |
5 | RICHARDSON Simon | 75 |
12 | EEFTING-BLOEM Roy | 75 |
16 | AREGGER Marcel | 70 |
19 | LANG Pirmin | 73 |
20 | KROTKÝ Rostislav | 73 |
31 | BICHLMANN Daniel | 72 |
46 | FUMEAUX Jonathan | 61 |
49 | SMITH Dion | 67 |
51 | MCCONVEY Connor | 67 |
59 | CRAVEN Dan | 75 |
72 | MCCANN David | 73 |
81 | NORMAN LETH Lasse | 75 |
86 | VINGERLING Michael | 75 |
89 | IRVINE Martyn | 80 |
101 | GULLEN James | 65 |
112 | BENNETT Sam | 73 |
140 | SCHÄFER Timo | 66 |
143 | O'LOUGHLIN David | 68 |