Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1 * weight + 113
This means that on average for every extra kilogram weight a rider loses -1 positions in the result.
Lang
1
73 kgCraven
5
75 kgMcconvey
7
67 kgBennett
8
73 kgBagdonas
9
78 kgEefting-Bloem
16
75 kgKrotký
20
73 kgBiałobłocki
26
79 kgAregger
34
70 kgSmith
41
67 kgBaldo
45
73 kgMcCann
48
73 kgFumeaux
49
61 kgVingerling
50
75 kgRichardson
53
75 kgGullen
58
65 kgNorman Leth
70
75 kgBichlmann
72
72 kgIrvine
92
80 kgSchäfer
113
66 kg
1
73 kgCraven
5
75 kgMcconvey
7
67 kgBennett
8
73 kgBagdonas
9
78 kgEefting-Bloem
16
75 kgKrotký
20
73 kgBiałobłocki
26
79 kgAregger
34
70 kgSmith
41
67 kgBaldo
45
73 kgMcCann
48
73 kgFumeaux
49
61 kgVingerling
50
75 kgRichardson
53
75 kgGullen
58
65 kgNorman Leth
70
75 kgBichlmann
72
72 kgIrvine
92
80 kgSchäfer
113
66 kg
Weight (KG) →
Result →
80
61
1
113
# | Rider | Weight (KG) |
---|---|---|
1 | LANG Pirmin | 73 |
5 | CRAVEN Dan | 75 |
7 | MCCONVEY Connor | 67 |
8 | BENNETT Sam | 73 |
9 | BAGDONAS Gediminas | 78 |
16 | EEFTING-BLOEM Roy | 75 |
20 | KROTKÝ Rostislav | 73 |
26 | BIAŁOBŁOCKI Marcin | 79 |
34 | AREGGER Marcel | 70 |
41 | SMITH Dion | 67 |
45 | BALDO Nicolas | 73 |
48 | MCCANN David | 73 |
49 | FUMEAUX Jonathan | 61 |
50 | VINGERLING Michael | 75 |
53 | RICHARDSON Simon | 75 |
58 | GULLEN James | 65 |
70 | NORMAN LETH Lasse | 75 |
72 | BICHLMANN Daniel | 72 |
92 | IRVINE Martyn | 80 |
113 | SCHÄFER Timo | 66 |