Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.1 * weight + 189
This means that on average for every extra kilogram weight a rider loses -2.1 positions in the result.
Lang
1
73 kgBiałobłocki
4
79 kgMcconvey
5
67 kgBagdonas
6
78 kgBaldo
9
73 kgMcCann
11
73 kgNorman Leth
16
75 kgEefting-Bloem
20
75 kgKrotký
22
73 kgFumeaux
32
61 kgBennett
33
73 kgIrvine
45
80 kgGullen
48
65 kgRichardson
53
75 kgVingerling
74
75 kgAregger
78
70 kgBichlmann
82
72 kgSchäfer
125
66 kg
1
73 kgBiałobłocki
4
79 kgMcconvey
5
67 kgBagdonas
6
78 kgBaldo
9
73 kgMcCann
11
73 kgNorman Leth
16
75 kgEefting-Bloem
20
75 kgKrotký
22
73 kgFumeaux
32
61 kgBennett
33
73 kgIrvine
45
80 kgGullen
48
65 kgRichardson
53
75 kgVingerling
74
75 kgAregger
78
70 kgBichlmann
82
72 kgSchäfer
125
66 kg
Weight (KG) →
Result →
80
61
1
125
# | Rider | Weight (KG) |
---|---|---|
1 | LANG Pirmin | 73 |
4 | BIAŁOBŁOCKI Marcin | 79 |
5 | MCCONVEY Connor | 67 |
6 | BAGDONAS Gediminas | 78 |
9 | BALDO Nicolas | 73 |
11 | MCCANN David | 73 |
16 | NORMAN LETH Lasse | 75 |
20 | EEFTING-BLOEM Roy | 75 |
22 | KROTKÝ Rostislav | 73 |
32 | FUMEAUX Jonathan | 61 |
33 | BENNETT Sam | 73 |
45 | IRVINE Martyn | 80 |
48 | GULLEN James | 65 |
53 | RICHARDSON Simon | 75 |
74 | VINGERLING Michael | 75 |
78 | AREGGER Marcel | 70 |
82 | BICHLMANN Daniel | 72 |
125 | SCHÄFER Timo | 66 |