Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.6 * weight + 238
This means that on average for every extra kilogram weight a rider loses -2.6 positions in the result.
Białobłocki
2
79 kgMcCann
4
73 kgBagdonas
5
78 kgNorman Leth
8
75 kgGullen
15
65 kgBaldo
17
73 kgLang
19
73 kgBennett
24
73 kgMcconvey
32
67 kgKrotký
36
73 kgIrvine
38
80 kgEefting-Bloem
39
75 kgFumeaux
44
61 kgRichardson
51
75 kgVingerling
98
75 kgSchäfer
131
66 kgAregger
140
70 kgBichlmann
152
72 kg
2
79 kgMcCann
4
73 kgBagdonas
5
78 kgNorman Leth
8
75 kgGullen
15
65 kgBaldo
17
73 kgLang
19
73 kgBennett
24
73 kgMcconvey
32
67 kgKrotký
36
73 kgIrvine
38
80 kgEefting-Bloem
39
75 kgFumeaux
44
61 kgRichardson
51
75 kgVingerling
98
75 kgSchäfer
131
66 kgAregger
140
70 kgBichlmann
152
72 kg
Weight (KG) →
Result →
80
61
2
152
| # | Rider | Weight (KG) |
|---|---|---|
| 2 | BIAŁOBŁOCKI Marcin | 79 |
| 4 | MCCANN David | 73 |
| 5 | BAGDONAS Gediminas | 78 |
| 8 | NORMAN LETH Lasse | 75 |
| 15 | GULLEN James | 65 |
| 17 | BALDO Nicolas | 73 |
| 19 | LANG Pirmin | 73 |
| 24 | BENNETT Sam | 73 |
| 32 | MCCONVEY Connor | 67 |
| 36 | KROTKÝ Rostislav | 73 |
| 38 | IRVINE Martyn | 80 |
| 39 | EEFTING-BLOEM Roy | 75 |
| 44 | FUMEAUX Jonathan | 61 |
| 51 | RICHARDSON Simon | 75 |
| 98 | VINGERLING Michael | 75 |
| 131 | SCHÄFER Timo | 66 |
| 140 | AREGGER Marcel | 70 |
| 152 | BICHLMANN Daniel | 72 |