Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Fumeaux
3
61 kgBaldo
4
73 kgBagdonas
5
78 kgBiałobłocki
6
79 kgLang
9
73 kgMcCann
12
73 kgMcconvey
13
67 kgKrotký
36
73 kgNorman Leth
39
75 kgGullen
40
65 kgBennett
41
73 kgRichardson
49
75 kgBichlmann
70
72 kgIrvine
72
80 kgAregger
81
70 kgSchäfer
102
66 kgEefting-Bloem
114
75 kgVingerling
132
75 kg
3
61 kgBaldo
4
73 kgBagdonas
5
78 kgBiałobłocki
6
79 kgLang
9
73 kgMcCann
12
73 kgMcconvey
13
67 kgKrotký
36
73 kgNorman Leth
39
75 kgGullen
40
65 kgBennett
41
73 kgRichardson
49
75 kgBichlmann
70
72 kgIrvine
72
80 kgAregger
81
70 kgSchäfer
102
66 kgEefting-Bloem
114
75 kgVingerling
132
75 kg
Weight (KG) →
Result →
80
61
3
132
# | Rider | Weight (KG) |
---|---|---|
3 | FUMEAUX Jonathan | 61 |
4 | BALDO Nicolas | 73 |
5 | BAGDONAS Gediminas | 78 |
6 | BIAŁOBŁOCKI Marcin | 79 |
9 | LANG Pirmin | 73 |
12 | MCCANN David | 73 |
13 | MCCONVEY Connor | 67 |
36 | KROTKÝ Rostislav | 73 |
39 | NORMAN LETH Lasse | 75 |
40 | GULLEN James | 65 |
41 | BENNETT Sam | 73 |
49 | RICHARDSON Simon | 75 |
70 | BICHLMANN Daniel | 72 |
72 | IRVINE Martyn | 80 |
81 | AREGGER Marcel | 70 |
102 | SCHÄFER Timo | 66 |
114 | EEFTING-BLOEM Roy | 75 |
132 | VINGERLING Michael | 75 |