Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1 * weight + 115
This means that on average for every extra kilogram weight a rider loses -1 positions in the result.
Baldo
1
73 kgLang
5
73 kgMcCann
6
73 kgBiałobłocki
7
79 kgBagdonas
10
78 kgKrotký
16
73 kgFumeaux
18
61 kgMcconvey
28
67 kgNorman Leth
32
75 kgBichlmann
39
72 kgVingerling
42
75 kgRichardson
59
75 kgIrvine
66
80 kgGullen
73
65 kgAregger
78
70 kgBennett
95
73 kgSchäfer
107
66 kgEefting-Bloem
132
75 kg
1
73 kgLang
5
73 kgMcCann
6
73 kgBiałobłocki
7
79 kgBagdonas
10
78 kgKrotký
16
73 kgFumeaux
18
61 kgMcconvey
28
67 kgNorman Leth
32
75 kgBichlmann
39
72 kgVingerling
42
75 kgRichardson
59
75 kgIrvine
66
80 kgGullen
73
65 kgAregger
78
70 kgBennett
95
73 kgSchäfer
107
66 kgEefting-Bloem
132
75 kg
Weight (KG) →
Result →
80
61
1
132
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | BALDO Nicolas | 73 |
| 5 | LANG Pirmin | 73 |
| 6 | MCCANN David | 73 |
| 7 | BIAŁOBŁOCKI Marcin | 79 |
| 10 | BAGDONAS Gediminas | 78 |
| 16 | KROTKÝ Rostislav | 73 |
| 18 | FUMEAUX Jonathan | 61 |
| 28 | MCCONVEY Connor | 67 |
| 32 | NORMAN LETH Lasse | 75 |
| 39 | BICHLMANN Daniel | 72 |
| 42 | VINGERLING Michael | 75 |
| 59 | RICHARDSON Simon | 75 |
| 66 | IRVINE Martyn | 80 |
| 73 | GULLEN James | 65 |
| 78 | AREGGER Marcel | 70 |
| 95 | BENNETT Sam | 73 |
| 107 | SCHÄFER Timo | 66 |
| 132 | EEFTING-BLOEM Roy | 75 |