Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 52
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Białobłocki
1
79 kgDoull
2
71 kgGuldhammer
4
66 kgVereecken
5
72 kgEdmüller
6
70 kgMcconvey
7
67 kgBennett
9
73 kgDe Buyst
11
72 kgDe Pauw
12
72 kgArchbold
13
79 kgPozdnyakov
16
67 kgYates
17
58 kgNorthey
20
69 kgDe Ketele
28
66 kgOliphant
29
66 kgLampier
32
68 kgBichlmann
34
72 kgPorter
35
73 kg
1
79 kgDoull
2
71 kgGuldhammer
4
66 kgVereecken
5
72 kgEdmüller
6
70 kgMcconvey
7
67 kgBennett
9
73 kgDe Buyst
11
72 kgDe Pauw
12
72 kgArchbold
13
79 kgPozdnyakov
16
67 kgYates
17
58 kgNorthey
20
69 kgDe Ketele
28
66 kgOliphant
29
66 kgLampier
32
68 kgBichlmann
34
72 kgPorter
35
73 kg
Weight (KG) →
Result →
79
58
1
35
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | BIAŁOBŁOCKI Marcin | 79 |
| 2 | DOULL Owain | 71 |
| 4 | GULDHAMMER Rasmus | 66 |
| 5 | VEREECKEN Nicolas | 72 |
| 6 | EDMÜLLER Benjamin | 70 |
| 7 | MCCONVEY Connor | 67 |
| 9 | BENNETT Sam | 73 |
| 11 | DE BUYST Jasper | 72 |
| 12 | DE PAUW Moreno | 72 |
| 13 | ARCHBOLD Shane | 79 |
| 16 | POZDNYAKOV Kirill | 67 |
| 17 | YATES Simon | 58 |
| 20 | NORTHEY Michael James | 69 |
| 28 | DE KETELE Kenny | 66 |
| 29 | OLIPHANT Evan | 66 |
| 32 | LAMPIER Steven | 68 |
| 34 | BICHLMANN Daniel | 72 |
| 35 | PORTER Elliott | 73 |