Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 51
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
Peters
2
67 kgBiałobłocki
7
79 kgPichetta
9
56 kgTedeschi
10
69 kgWachter
11
72 kgBevin
12
75 kgEibegger
18
68 kgMühlberger
19
64 kgOckeloen
21
66 kgScott
29
68 kgDibben
31
78 kgBallerini
32
71 kgMackinnon
35
75 kgMcconvey
40
67 kgDoull
41
71 kgPettiti
43
71 kgSchreurs
74
69 kgArchbold
80
79 kg
2
67 kgBiałobłocki
7
79 kgPichetta
9
56 kgTedeschi
10
69 kgWachter
11
72 kgBevin
12
75 kgEibegger
18
68 kgMühlberger
19
64 kgOckeloen
21
66 kgScott
29
68 kgDibben
31
78 kgBallerini
32
71 kgMackinnon
35
75 kgMcconvey
40
67 kgDoull
41
71 kgPettiti
43
71 kgSchreurs
74
69 kgArchbold
80
79 kg
Weight (KG) →
Result →
79
56
2
80
# | Rider | Weight (KG) |
---|---|---|
2 | PETERS Alex | 67 |
7 | BIAŁOBŁOCKI Marcin | 79 |
9 | PICHETTA Ricardo | 56 |
10 | TEDESCHI Mirko | 69 |
11 | WACHTER Alexander | 72 |
12 | BEVIN Patrick | 75 |
18 | EIBEGGER Markus | 68 |
19 | MÜHLBERGER Gregor | 64 |
21 | OCKELOEN Jasper | 66 |
29 | SCOTT Jacob | 68 |
31 | DIBBEN Jonathan | 78 |
32 | BALLERINI Davide | 71 |
35 | MACKINNON Sean | 75 |
40 | MCCONVEY Connor | 67 |
41 | DOULL Owain | 71 |
43 | PETTITI Alessandro | 71 |
74 | SCHREURS Hamish | 69 |
80 | ARCHBOLD Shane | 79 |