Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 49
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Bevin
1
75 kgPettiti
3
71 kgEibegger
4
68 kgPeters
7
67 kgDoull
8
71 kgWachter
15
72 kgLampier
17
68 kgBiałobłocki
22
79 kgMühlberger
24
64 kgArchbold
30
79 kgPichetta
31
56 kgDibben
34
78 kgOckeloen
37
66 kgMackinnon
39
75 kgScott
41
68 kgTedeschi
48
69 kgBallerini
51
71 kgLawless
55
72 kgMcconvey
74
67 kgSchreurs
92
69 kgWood
119
72 kg
1
75 kgPettiti
3
71 kgEibegger
4
68 kgPeters
7
67 kgDoull
8
71 kgWachter
15
72 kgLampier
17
68 kgBiałobłocki
22
79 kgMühlberger
24
64 kgArchbold
30
79 kgPichetta
31
56 kgDibben
34
78 kgOckeloen
37
66 kgMackinnon
39
75 kgScott
41
68 kgTedeschi
48
69 kgBallerini
51
71 kgLawless
55
72 kgMcconvey
74
67 kgSchreurs
92
69 kgWood
119
72 kg
Weight (KG) →
Result →
79
56
1
119
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | BEVIN Patrick | 75 |
| 3 | PETTITI Alessandro | 71 |
| 4 | EIBEGGER Markus | 68 |
| 7 | PETERS Alex | 67 |
| 8 | DOULL Owain | 71 |
| 15 | WACHTER Alexander | 72 |
| 17 | LAMPIER Steven | 68 |
| 22 | BIAŁOBŁOCKI Marcin | 79 |
| 24 | MÜHLBERGER Gregor | 64 |
| 30 | ARCHBOLD Shane | 79 |
| 31 | PICHETTA Ricardo | 56 |
| 34 | DIBBEN Jonathan | 78 |
| 37 | OCKELOEN Jasper | 66 |
| 39 | MACKINNON Sean | 75 |
| 41 | SCOTT Jacob | 68 |
| 48 | TEDESCHI Mirko | 69 |
| 51 | BALLERINI Davide | 71 |
| 55 | LAWLESS Chris | 72 |
| 74 | MCCONVEY Connor | 67 |
| 92 | SCHREURS Hamish | 69 |
| 119 | WOOD Oliver | 72 |