Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 37
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Bevin
1
75 kgPettiti
3
71 kgEibegger
4
68 kgPeters
7
67 kgDoull
8
71 kgWachter
16
72 kgLampier
17
68 kgBiałobłocki
21
79 kgMühlberger
24
64 kgPichetta
26
56 kgArchbold
28
79 kgOckeloen
33
66 kgDibben
36
78 kgScott
38
68 kgMackinnon
41
75 kgTedeschi
47
69 kgBallerini
54
71 kgLawless
57
72 kgMcconvey
68
67 kgSchreurs
110
69 kgWood
119
72 kg
1
75 kgPettiti
3
71 kgEibegger
4
68 kgPeters
7
67 kgDoull
8
71 kgWachter
16
72 kgLampier
17
68 kgBiałobłocki
21
79 kgMühlberger
24
64 kgPichetta
26
56 kgArchbold
28
79 kgOckeloen
33
66 kgDibben
36
78 kgScott
38
68 kgMackinnon
41
75 kgTedeschi
47
69 kgBallerini
54
71 kgLawless
57
72 kgMcconvey
68
67 kgSchreurs
110
69 kgWood
119
72 kg
Weight (KG) →
Result →
79
56
1
119
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | BEVIN Patrick | 75 |
| 3 | PETTITI Alessandro | 71 |
| 4 | EIBEGGER Markus | 68 |
| 7 | PETERS Alex | 67 |
| 8 | DOULL Owain | 71 |
| 16 | WACHTER Alexander | 72 |
| 17 | LAMPIER Steven | 68 |
| 21 | BIAŁOBŁOCKI Marcin | 79 |
| 24 | MÜHLBERGER Gregor | 64 |
| 26 | PICHETTA Ricardo | 56 |
| 28 | ARCHBOLD Shane | 79 |
| 33 | OCKELOEN Jasper | 66 |
| 36 | DIBBEN Jonathan | 78 |
| 38 | SCOTT Jacob | 68 |
| 41 | MACKINNON Sean | 75 |
| 47 | TEDESCHI Mirko | 69 |
| 54 | BALLERINI Davide | 71 |
| 57 | LAWLESS Chris | 72 |
| 68 | MCCONVEY Connor | 67 |
| 110 | SCHREURS Hamish | 69 |
| 119 | WOOD Oliver | 72 |