Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.6 * weight - 72
This means that on average for every extra kilogram weight a rider loses 1.6 positions in the result.
Bevin
1
75 kgPettiti
3
71 kgEibegger
4
68 kgPeters
6
67 kgDoull
7
71 kgLampier
15
68 kgBiałobłocki
18
79 kgMühlberger
21
64 kgPichetta
23
56 kgOckeloen
25
66 kgMackinnon
33
75 kgTedeschi
35
69 kgWachter
36
72 kgDibben
39
78 kgScott
41
68 kgBallerini
45
71 kgMcconvey
67
67 kgLawless
92
72 kgSchreurs
107
69 kgWood
109
72 kgArchbold
116
79 kg
1
75 kgPettiti
3
71 kgEibegger
4
68 kgPeters
6
67 kgDoull
7
71 kgLampier
15
68 kgBiałobłocki
18
79 kgMühlberger
21
64 kgPichetta
23
56 kgOckeloen
25
66 kgMackinnon
33
75 kgTedeschi
35
69 kgWachter
36
72 kgDibben
39
78 kgScott
41
68 kgBallerini
45
71 kgMcconvey
67
67 kgLawless
92
72 kgSchreurs
107
69 kgWood
109
72 kgArchbold
116
79 kg
Weight (KG) →
Result →
79
56
1
116
# | Rider | Weight (KG) |
---|---|---|
1 | BEVIN Patrick | 75 |
3 | PETTITI Alessandro | 71 |
4 | EIBEGGER Markus | 68 |
6 | PETERS Alex | 67 |
7 | DOULL Owain | 71 |
15 | LAMPIER Steven | 68 |
18 | BIAŁOBŁOCKI Marcin | 79 |
21 | MÜHLBERGER Gregor | 64 |
23 | PICHETTA Ricardo | 56 |
25 | OCKELOEN Jasper | 66 |
33 | MACKINNON Sean | 75 |
35 | TEDESCHI Mirko | 69 |
36 | WACHTER Alexander | 72 |
39 | DIBBEN Jonathan | 78 |
41 | SCOTT Jacob | 68 |
45 | BALLERINI Davide | 71 |
67 | MCCONVEY Connor | 67 |
92 | LAWLESS Chris | 72 |
107 | SCHREURS Hamish | 69 |
109 | WOOD Oliver | 72 |
116 | ARCHBOLD Shane | 79 |