Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.7 * weight - 85
This means that on average for every extra kilogram weight a rider loses 1.7 positions in the result.
Peters
2
67 kgBiałobłocki
7
79 kgPichetta
9
56 kgTedeschi
10
69 kgWachter
11
72 kgBevin
13
75 kgPettiti
14
71 kgDoull
16
71 kgEibegger
19
68 kgLampier
21
68 kgMühlberger
25
64 kgOckeloen
28
66 kgMackinnon
34
75 kgScott
37
68 kgDibben
38
78 kgBallerini
40
71 kgMcconvey
56
67 kgLawless
93
72 kgSchreurs
101
69 kgWood
104
72 kgArchbold
110
79 kg
2
67 kgBiałobłocki
7
79 kgPichetta
9
56 kgTedeschi
10
69 kgWachter
11
72 kgBevin
13
75 kgPettiti
14
71 kgDoull
16
71 kgEibegger
19
68 kgLampier
21
68 kgMühlberger
25
64 kgOckeloen
28
66 kgMackinnon
34
75 kgScott
37
68 kgDibben
38
78 kgBallerini
40
71 kgMcconvey
56
67 kgLawless
93
72 kgSchreurs
101
69 kgWood
104
72 kgArchbold
110
79 kg
Weight (KG) →
Result →
79
56
2
110
| # | Rider | Weight (KG) |
|---|---|---|
| 2 | PETERS Alex | 67 |
| 7 | BIAŁOBŁOCKI Marcin | 79 |
| 9 | PICHETTA Ricardo | 56 |
| 10 | TEDESCHI Mirko | 69 |
| 11 | WACHTER Alexander | 72 |
| 13 | BEVIN Patrick | 75 |
| 14 | PETTITI Alessandro | 71 |
| 16 | DOULL Owain | 71 |
| 19 | EIBEGGER Markus | 68 |
| 21 | LAMPIER Steven | 68 |
| 25 | MÜHLBERGER Gregor | 64 |
| 28 | OCKELOEN Jasper | 66 |
| 34 | MACKINNON Sean | 75 |
| 37 | SCOTT Jacob | 68 |
| 38 | DIBBEN Jonathan | 78 |
| 40 | BALLERINI Davide | 71 |
| 56 | MCCONVEY Connor | 67 |
| 93 | LAWLESS Chris | 72 |
| 101 | SCHREURS Hamish | 69 |
| 104 | WOOD Oliver | 72 |
| 110 | ARCHBOLD Shane | 79 |