Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 67
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Peters
2
67 kgBiałobłocki
7
79 kgPichetta
9
56 kgTedeschi
10
69 kgWachter
11
72 kgBevin
12
75 kgDoull
14
71 kgEibegger
15
68 kgLampier
18
68 kgPettiti
19
71 kgMühlberger
21
64 kgOckeloen
25
66 kgMackinnon
32
75 kgScott
35
68 kgDibben
38
78 kgBallerini
40
71 kgMcconvey
44
67 kgSchreurs
90
69 kgArchbold
99
79 kg
2
67 kgBiałobłocki
7
79 kgPichetta
9
56 kgTedeschi
10
69 kgWachter
11
72 kgBevin
12
75 kgDoull
14
71 kgEibegger
15
68 kgLampier
18
68 kgPettiti
19
71 kgMühlberger
21
64 kgOckeloen
25
66 kgMackinnon
32
75 kgScott
35
68 kgDibben
38
78 kgBallerini
40
71 kgMcconvey
44
67 kgSchreurs
90
69 kgArchbold
99
79 kg
Weight (KG) →
Result →
79
56
2
99
# | Rider | Weight (KG) |
---|---|---|
2 | PETERS Alex | 67 |
7 | BIAŁOBŁOCKI Marcin | 79 |
9 | PICHETTA Ricardo | 56 |
10 | TEDESCHI Mirko | 69 |
11 | WACHTER Alexander | 72 |
12 | BEVIN Patrick | 75 |
14 | DOULL Owain | 71 |
15 | EIBEGGER Markus | 68 |
18 | LAMPIER Steven | 68 |
19 | PETTITI Alessandro | 71 |
21 | MÜHLBERGER Gregor | 64 |
25 | OCKELOEN Jasper | 66 |
32 | MACKINNON Sean | 75 |
35 | SCOTT Jacob | 68 |
38 | DIBBEN Jonathan | 78 |
40 | BALLERINI Davide | 71 |
44 | MCCONVEY Connor | 67 |
90 | SCHREURS Hamish | 69 |
99 | ARCHBOLD Shane | 79 |