Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Eibegger
1
68 kgDoull
2
71 kgBevin
3
75 kgLampier
6
68 kgOckeloen
9
66 kgArchbold
12
79 kgTedeschi
14
69 kgMcconvey
16
67 kgBiałobłocki
18
79 kgPeters
19
67 kgMühlberger
20
64 kgBallerini
27
71 kgPettiti
29
71 kgScott
31
68 kgSchreurs
40
69 kgPichetta
42
56 kgWachter
43
72 kgDibben
61
78 kgMackinnon
65
75 kg
1
68 kgDoull
2
71 kgBevin
3
75 kgLampier
6
68 kgOckeloen
9
66 kgArchbold
12
79 kgTedeschi
14
69 kgMcconvey
16
67 kgBiałobłocki
18
79 kgPeters
19
67 kgMühlberger
20
64 kgBallerini
27
71 kgPettiti
29
71 kgScott
31
68 kgSchreurs
40
69 kgPichetta
42
56 kgWachter
43
72 kgDibben
61
78 kgMackinnon
65
75 kg
Weight (KG) →
Result →
79
56
1
65
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | EIBEGGER Markus | 68 |
| 2 | DOULL Owain | 71 |
| 3 | BEVIN Patrick | 75 |
| 6 | LAMPIER Steven | 68 |
| 9 | OCKELOEN Jasper | 66 |
| 12 | ARCHBOLD Shane | 79 |
| 14 | TEDESCHI Mirko | 69 |
| 16 | MCCONVEY Connor | 67 |
| 18 | BIAŁOBŁOCKI Marcin | 79 |
| 19 | PETERS Alex | 67 |
| 20 | MÜHLBERGER Gregor | 64 |
| 27 | BALLERINI Davide | 71 |
| 29 | PETTITI Alessandro | 71 |
| 31 | SCOTT Jacob | 68 |
| 40 | SCHREURS Hamish | 69 |
| 42 | PICHETTA Ricardo | 56 |
| 43 | WACHTER Alexander | 72 |
| 61 | DIBBEN Jonathan | 78 |
| 65 | MACKINNON Sean | 75 |