Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Gate
1
71 kgvan der Hoorn
3
73 kgDonohoe
4
62 kgDunbar
7
57 kgHoller
8
58 kgHindley
9
60 kgDunne
12
88 kgHolmes
13
67 kgDowney
14
74 kgGullen
15
65 kgHamilton
16
71 kgEdmondson
17
62 kgVinther
20
68 kgMol
21
83 kgGough
27
71 kgStorer
29
63 kgDawson
35
73 kgWachter
38
72 kgGranigan
40
76 kgde Greef
44
65 kgTeggart
45
63 kg
1
71 kgvan der Hoorn
3
73 kgDonohoe
4
62 kgDunbar
7
57 kgHoller
8
58 kgHindley
9
60 kgDunne
12
88 kgHolmes
13
67 kgDowney
14
74 kgGullen
15
65 kgHamilton
16
71 kgEdmondson
17
62 kgVinther
20
68 kgMol
21
83 kgGough
27
71 kgStorer
29
63 kgDawson
35
73 kgWachter
38
72 kgGranigan
40
76 kgde Greef
44
65 kgTeggart
45
63 kg
Weight (KG) →
Result →
88
57
1
45
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | GATE Aaron | 71 |
| 3 | VAN DER HOORN Taco | 73 |
| 4 | DONOHOE Alistair | 62 |
| 7 | DUNBAR Eddie | 57 |
| 8 | HOLLER Nikodemus | 58 |
| 9 | HINDLEY Jai | 60 |
| 12 | DUNNE Conor | 88 |
| 13 | HOLMES Matthew | 67 |
| 14 | DOWNEY Mark | 74 |
| 15 | GULLEN James | 65 |
| 16 | HAMILTON Lucas | 71 |
| 17 | EDMONDSON Joshua | 62 |
| 20 | VINTHER Troels Rønning | 68 |
| 21 | MOL Wouter | 83 |
| 27 | GOUGH Regan | 71 |
| 29 | STORER Michael | 63 |
| 35 | DAWSON Christopher | 73 |
| 38 | WACHTER Alexander | 72 |
| 40 | GRANIGAN Noah | 76 |
| 44 | DE GREEF Robbert | 65 |
| 45 | TEGGART Matthew | 63 |