Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Gate
1
71 kgvan der Hoorn
3
73 kgHoller
5
58 kgDunne
6
88 kgDonohoe
11
62 kgEdmondson
12
62 kgVinther
13
68 kgHindley
14
60 kgGullen
15
65 kgMol
16
83 kgDunbar
18
57 kgDowney
19
74 kgVereecken
20
72 kgKennett
23
75 kgHolmes
25
67 kgHamilton
27
71 kgLaverack
29
62 kgWachter
33
72 kgGough
34
71 kgde Greef
37
65 kgTeggart
38
63 kg
1
71 kgvan der Hoorn
3
73 kgHoller
5
58 kgDunne
6
88 kgDonohoe
11
62 kgEdmondson
12
62 kgVinther
13
68 kgHindley
14
60 kgGullen
15
65 kgMol
16
83 kgDunbar
18
57 kgDowney
19
74 kgVereecken
20
72 kgKennett
23
75 kgHolmes
25
67 kgHamilton
27
71 kgLaverack
29
62 kgWachter
33
72 kgGough
34
71 kgde Greef
37
65 kgTeggart
38
63 kg
Weight (KG) →
Result →
88
57
1
38
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | GATE Aaron | 71 |
| 3 | VAN DER HOORN Taco | 73 |
| 5 | HOLLER Nikodemus | 58 |
| 6 | DUNNE Conor | 88 |
| 11 | DONOHOE Alistair | 62 |
| 12 | EDMONDSON Joshua | 62 |
| 13 | VINTHER Troels Rønning | 68 |
| 14 | HINDLEY Jai | 60 |
| 15 | GULLEN James | 65 |
| 16 | MOL Wouter | 83 |
| 18 | DUNBAR Eddie | 57 |
| 19 | DOWNEY Mark | 74 |
| 20 | VEREECKEN Nicolas | 72 |
| 23 | KENNETT Dylan | 75 |
| 25 | HOLMES Matthew | 67 |
| 27 | HAMILTON Lucas | 71 |
| 29 | LAVERACK Edward | 62 |
| 33 | WACHTER Alexander | 72 |
| 34 | GOUGH Regan | 71 |
| 37 | DE GREEF Robbert | 65 |
| 38 | TEGGART Matthew | 63 |