Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 12
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Gate
1
71 kgvan der Hoorn
4
73 kgDonohoe
5
62 kgHindley
7
60 kgHoller
8
58 kgDunbar
9
57 kgDunne
12
88 kgHolmes
13
67 kgHamilton
14
71 kgEdmondson
15
62 kgGullen
17
65 kgDowney
18
74 kgVinther
19
68 kgMol
20
83 kgVereecken
22
72 kgGough
26
71 kgStorer
28
63 kgDawson
33
73 kgWachter
35
72 kgde Greef
40
65 kgTeggart
41
63 kg
1
71 kgvan der Hoorn
4
73 kgDonohoe
5
62 kgHindley
7
60 kgHoller
8
58 kgDunbar
9
57 kgDunne
12
88 kgHolmes
13
67 kgHamilton
14
71 kgEdmondson
15
62 kgGullen
17
65 kgDowney
18
74 kgVinther
19
68 kgMol
20
83 kgVereecken
22
72 kgGough
26
71 kgStorer
28
63 kgDawson
33
73 kgWachter
35
72 kgde Greef
40
65 kgTeggart
41
63 kg
Weight (KG) →
Result →
88
57
1
41
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | GATE Aaron | 71 |
| 4 | VAN DER HOORN Taco | 73 |
| 5 | DONOHOE Alistair | 62 |
| 7 | HINDLEY Jai | 60 |
| 8 | HOLLER Nikodemus | 58 |
| 9 | DUNBAR Eddie | 57 |
| 12 | DUNNE Conor | 88 |
| 13 | HOLMES Matthew | 67 |
| 14 | HAMILTON Lucas | 71 |
| 15 | EDMONDSON Joshua | 62 |
| 17 | GULLEN James | 65 |
| 18 | DOWNEY Mark | 74 |
| 19 | VINTHER Troels Rønning | 68 |
| 20 | MOL Wouter | 83 |
| 22 | VEREECKEN Nicolas | 72 |
| 26 | GOUGH Regan | 71 |
| 28 | STORER Michael | 63 |
| 33 | DAWSON Christopher | 73 |
| 35 | WACHTER Alexander | 72 |
| 40 | DE GREEF Robbert | 65 |
| 41 | TEGGART Matthew | 63 |