Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 60
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
O'Loughlin
1
72 kgGough
2
71 kgTeggart
3
63 kgDowney
4
74 kgFeeley
5
59 kgStorer
6
63 kgJenner
9
64 kgMcDunphy
11
70 kgO'Mahony
12
69 kgWeemaes
13
73 kgFinkšt
14
70 kgWelsford
16
79 kgJerman
21
67 kgThijssen
22
74 kgGrošelj
24
70 kgRučigaj
25
68 kgGranigan
29
76 kgDaly
32
78 kgHesters
33
72 kgRyan
34
70 kgMcGeough
38
76 kg
1
72 kgGough
2
71 kgTeggart
3
63 kgDowney
4
74 kgFeeley
5
59 kgStorer
6
63 kgJenner
9
64 kgMcDunphy
11
70 kgO'Mahony
12
69 kgWeemaes
13
73 kgFinkšt
14
70 kgWelsford
16
79 kgJerman
21
67 kgThijssen
22
74 kgGrošelj
24
70 kgRučigaj
25
68 kgGranigan
29
76 kgDaly
32
78 kgHesters
33
72 kgRyan
34
70 kgMcGeough
38
76 kg
Weight (KG) →
Result →
79
59
1
38
# | Rider | Weight (KG) |
---|---|---|
1 | O'LOUGHLIN Michael | 72 |
2 | GOUGH Regan | 71 |
3 | TEGGART Matthew | 63 |
4 | DOWNEY Mark | 74 |
5 | FEELEY Daire | 59 |
6 | STORER Michael | 63 |
9 | JENNER Samuel | 64 |
11 | MCDUNPHY Conn | 70 |
12 | O'MAHONY Darragh | 69 |
13 | WEEMAES Sasha | 73 |
14 | FINKŠT Tilen | 70 |
16 | WELSFORD Sam | 79 |
21 | JERMAN Žiga | 67 |
22 | THIJSSEN Gerben | 74 |
24 | GROŠELJ Matic | 70 |
25 | RUČIGAJ Žiga | 68 |
29 | GRANIGAN Noah | 76 |
32 | DALY Cormac | 78 |
33 | HESTERS Jules | 72 |
34 | RYAN Fintan | 70 |
38 | MCGEOUGH Cormac | 76 |