Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 25
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Thièry
1
67 kgBugter
2
81 kgGhys
4
72 kgVan Dalen
5
70 kgHoller
7
58 kgDe Ketele
9
66 kgBax
10
78 kgRüegg
11
66 kgRathe
12
74 kgMcDunphy
13
70 kgStedman
14
54 kgTulner
18
62 kgJanssen
20
76 kgRyan
36
70 kgBichlmann
40
72 kgRoberts
44
69 kgImhof
47
80 kgCastillo
50
72 kgTownsend
54
73 kgvan Engelen
56
51 kgDowning
58
64 kgDaly
62
78 kgLizde
64
70 kgWhite
104
70 kg
1
67 kgBugter
2
81 kgGhys
4
72 kgVan Dalen
5
70 kgHoller
7
58 kgDe Ketele
9
66 kgBax
10
78 kgRüegg
11
66 kgRathe
12
74 kgMcDunphy
13
70 kgStedman
14
54 kgTulner
18
62 kgJanssen
20
76 kgRyan
36
70 kgBichlmann
40
72 kgRoberts
44
69 kgImhof
47
80 kgCastillo
50
72 kgTownsend
54
73 kgvan Engelen
56
51 kgDowning
58
64 kgDaly
62
78 kgLizde
64
70 kgWhite
104
70 kg
Weight (KG) →
Result →
81
51
1
104
# | Rider | Weight (KG) |
---|---|---|
1 | THIÈRY Cyrille | 67 |
2 | BUGTER Luuc | 81 |
4 | GHYS Robbe | 72 |
5 | VAN DALEN Jason | 70 |
7 | HOLLER Nikodemus | 58 |
9 | DE KETELE Kenny | 66 |
10 | BAX Sjoerd | 78 |
11 | RÜEGG Lukas | 66 |
12 | RATHE Jacob | 74 |
13 | MCDUNPHY Conn | 70 |
14 | STEDMAN Maximilian | 54 |
18 | TULNER Rens | 62 |
20 | JANSSEN Adriaan | 76 |
36 | RYAN Fintan | 70 |
40 | BICHLMANN Daniel | 72 |
44 | ROBERTS William | 69 |
47 | IMHOF Claudio | 80 |
50 | CASTILLO Ulises Alfredo | 72 |
54 | TOWNSEND Rory | 73 |
56 | VAN ENGELEN Adne | 51 |
58 | DOWNING Russell | 64 |
62 | DALY Cormac | 78 |
64 | LIZDE Seid | 70 |
104 | WHITE Curtis | 70 |