Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3 * weight + 244
This means that on average for every extra kilogram weight a rider loses -3 positions in the result.
Horner
1
70 kgZabriskie
2
67 kgVan den Broeck
3
69 kgWohlberg
4
63 kgMitchell
7
70 kgPate
14
73 kgHenderson
18
75 kgKilleen
20
65 kgFrischkorn
27
68 kgFraser
31
71 kgDomínguez
35
72 kgLewis
41
65 kgMcCarty
44
68 kgFrattini
47
63 kgDuggan
90
60 kgHaedo
99
73 kgAbe
104
67 kgSuzuki
109
60 kg
1
70 kgZabriskie
2
67 kgVan den Broeck
3
69 kgWohlberg
4
63 kgMitchell
7
70 kgPate
14
73 kgHenderson
18
75 kgKilleen
20
65 kgFrischkorn
27
68 kgFraser
31
71 kgDomínguez
35
72 kgLewis
41
65 kgMcCarty
44
68 kgFrattini
47
63 kgDuggan
90
60 kgHaedo
99
73 kgAbe
104
67 kgSuzuki
109
60 kg
Weight (KG) →
Result →
75
60
1
109
# | Rider | Weight (KG) |
---|---|---|
1 | HORNER Chris | 70 |
2 | ZABRISKIE David | 67 |
3 | VAN DEN BROECK Jurgen | 69 |
4 | WOHLBERG Eric | 63 |
7 | MITCHELL Glen | 70 |
14 | PATE Danny | 73 |
18 | HENDERSON Gregory | 75 |
20 | KILLEEN Liam | 65 |
27 | FRISCHKORN William | 68 |
31 | FRASER Gordon | 71 |
35 | DOMÍNGUEZ Iván | 72 |
41 | LEWIS Craig | 65 |
44 | MCCARTY Jonathan Patrick | 68 |
47 | FRATTINI Davide | 63 |
90 | DUGGAN Timothy | 60 |
99 | HAEDO Juan José | 73 |
104 | ABE Yoshiyuki | 67 |
109 | SUZUKI Shinri | 60 |