Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.8 * weight - 80
This means that on average for every extra kilogram weight a rider loses 1.8 positions in the result.
Horner
1
70 kgVan den Broeck
8
69 kgKilleen
11
65 kgFrattini
12
63 kgMitchell
14
70 kgWohlberg
16
63 kgPate
23
73 kgAbe
26
67 kgFrischkorn
32
68 kgLewis
34
65 kgDomínguez
50
72 kgDuggan
52
60 kgMcCarty
65
68 kgHaedo
72
73 kgFraser
86
71 kgSuzuki
87
60 kgHenderson
124
75 kg
1
70 kgVan den Broeck
8
69 kgKilleen
11
65 kgFrattini
12
63 kgMitchell
14
70 kgWohlberg
16
63 kgPate
23
73 kgAbe
26
67 kgFrischkorn
32
68 kgLewis
34
65 kgDomínguez
50
72 kgDuggan
52
60 kgMcCarty
65
68 kgHaedo
72
73 kgFraser
86
71 kgSuzuki
87
60 kgHenderson
124
75 kg
Weight (KG) →
Result →
75
60
1
124
# | Rider | Weight (KG) |
---|---|---|
1 | HORNER Chris | 70 |
8 | VAN DEN BROECK Jurgen | 69 |
11 | KILLEEN Liam | 65 |
12 | FRATTINI Davide | 63 |
14 | MITCHELL Glen | 70 |
16 | WOHLBERG Eric | 63 |
23 | PATE Danny | 73 |
26 | ABE Yoshiyuki | 67 |
32 | FRISCHKORN William | 68 |
34 | LEWIS Craig | 65 |
50 | DOMÍNGUEZ Iván | 72 |
52 | DUGGAN Timothy | 60 |
65 | MCCARTY Jonathan Patrick | 68 |
72 | HAEDO Juan José | 73 |
86 | FRASER Gordon | 71 |
87 | SUZUKI Shinri | 60 |
124 | HENDERSON Gregory | 75 |