Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight + 28
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Lowe
1
64 kgKilleen
3
65 kgPate
6
73 kgWohlberg
7
63 kgMenzies
14
86 kgStević
26
66 kgBeyer
29
63 kgMitchell
30
70 kgKing
35
78 kgEuser
37
56 kgFrattini
48
63 kgMeier
52
61 kgTuft
66
77 kgJones
68
64 kgRoth
74
70 kgHaedo
75
73 kgClinger
85
77 kgStewart
114
72 kgTaberlay
117
62 kgPowers
127
68 kgFraser
130
71 kg
1
64 kgKilleen
3
65 kgPate
6
73 kgWohlberg
7
63 kgMenzies
14
86 kgStević
26
66 kgBeyer
29
63 kgMitchell
30
70 kgKing
35
78 kgEuser
37
56 kgFrattini
48
63 kgMeier
52
61 kgTuft
66
77 kgJones
68
64 kgRoth
74
70 kgHaedo
75
73 kgClinger
85
77 kgStewart
114
72 kgTaberlay
117
62 kgPowers
127
68 kgFraser
130
71 kg
Weight (KG) →
Result →
86
56
1
130
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | LOWE Trent | 64 |
| 3 | KILLEEN Liam | 65 |
| 6 | PATE Danny | 73 |
| 7 | WOHLBERG Eric | 63 |
| 14 | MENZIES Karl | 86 |
| 26 | STEVIĆ Ivan | 66 |
| 29 | BEYER Chad | 63 |
| 30 | MITCHELL Glen | 70 |
| 35 | KING Edward | 78 |
| 37 | EUSER Lucas | 56 |
| 48 | FRATTINI Davide | 63 |
| 52 | MEIER Christian | 61 |
| 66 | TUFT Svein | 77 |
| 68 | JONES Chris | 64 |
| 74 | ROTH Ryan | 70 |
| 75 | HAEDO Juan José | 73 |
| 85 | CLINGER David | 77 |
| 114 | STEWART Jackson | 72 |
| 117 | TABERLAY Sid | 62 |
| 127 | POWERS Jeremy | 68 |
| 130 | FRASER Gordon | 71 |