Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3.2 * weight + 275
This means that on average for every extra kilogram weight a rider loses -3.2 positions in the result.
Haedo
1
73 kgMenzies
5
86 kgStewart
9
72 kgFraser
10
71 kgClinger
17
77 kgStević
20
66 kgPate
21
73 kgKing
26
78 kgPowers
27
68 kgKilleen
30
65 kgWohlberg
32
63 kgLowe
47
64 kgMeier
63
61 kgJones
72
64 kgTuft
78
77 kgBeyer
94
63 kgFrattini
100
63 kgRoth
115
70 kgEuser
117
56 kgMitchell
122
70 kgTaberlay
127
62 kg
1
73 kgMenzies
5
86 kgStewart
9
72 kgFraser
10
71 kgClinger
17
77 kgStević
20
66 kgPate
21
73 kgKing
26
78 kgPowers
27
68 kgKilleen
30
65 kgWohlberg
32
63 kgLowe
47
64 kgMeier
63
61 kgJones
72
64 kgTuft
78
77 kgBeyer
94
63 kgFrattini
100
63 kgRoth
115
70 kgEuser
117
56 kgMitchell
122
70 kgTaberlay
127
62 kg
Weight (KG) →
Result →
86
56
1
127
# | Rider | Weight (KG) |
---|---|---|
1 | HAEDO Juan José | 73 |
5 | MENZIES Karl | 86 |
9 | STEWART Jackson | 72 |
10 | FRASER Gordon | 71 |
17 | CLINGER David | 77 |
20 | STEVIĆ Ivan | 66 |
21 | PATE Danny | 73 |
26 | KING Edward | 78 |
27 | POWERS Jeremy | 68 |
30 | KILLEEN Liam | 65 |
32 | WOHLBERG Eric | 63 |
47 | LOWE Trent | 64 |
63 | MEIER Christian | 61 |
72 | JONES Chris | 64 |
78 | TUFT Svein | 77 |
94 | BEYER Chad | 63 |
100 | FRATTINI Davide | 63 |
115 | ROTH Ryan | 70 |
117 | EUSER Lucas | 56 |
122 | MITCHELL Glen | 70 |
127 | TABERLAY Sid | 62 |