Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 23
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Zanotti
1
70 kgvan Heeswijk
2
73 kgCadamuro
4
78 kgde Jongh
5
76 kgDavis
7
73 kgGasparotto
8
65 kgMurn
9
70 kgQuinziato
10
74 kgZabel
11
69 kgvan Dijk
12
74 kgSteegmans
13
82 kgThijs
14
69 kgKirsipuu
15
80 kgMori
16
62 kgDekker
17
66 kgHaselbacher
18
69 kgVerdugo
19
71 kgVierhouten
20
71 kgHulsmans
21
75 kgGuesdon
22
73 kgVan Impe
23
75 kgVerbrugghe
24
70 kg
1
70 kgvan Heeswijk
2
73 kgCadamuro
4
78 kgde Jongh
5
76 kgDavis
7
73 kgGasparotto
8
65 kgMurn
9
70 kgQuinziato
10
74 kgZabel
11
69 kgvan Dijk
12
74 kgSteegmans
13
82 kgThijs
14
69 kgKirsipuu
15
80 kgMori
16
62 kgDekker
17
66 kgHaselbacher
18
69 kgVerdugo
19
71 kgVierhouten
20
71 kgHulsmans
21
75 kgGuesdon
22
73 kgVan Impe
23
75 kgVerbrugghe
24
70 kg
Weight (KG) →
Result →
82
62
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | ZANOTTI Marco | 70 |
2 | VAN HEESWIJK Max | 73 |
4 | CADAMURO Simone | 78 |
5 | DE JONGH Steven | 76 |
7 | DAVIS Allan | 73 |
8 | GASPAROTTO Enrico | 65 |
9 | MURN Uroš | 70 |
10 | QUINZIATO Manuel | 74 |
11 | ZABEL Erik | 69 |
12 | VAN DIJK Stefan | 74 |
13 | STEEGMANS Gert | 82 |
14 | THIJS Erwin | 69 |
15 | KIRSIPUU Jaan | 80 |
16 | MORI Manuele | 62 |
17 | DEKKER Erik | 66 |
18 | HASELBACHER René | 69 |
19 | VERDUGO Gorka | 71 |
20 | VIERHOUTEN Aart | 71 |
21 | HULSMANS Kevin | 75 |
22 | GUESDON Frédéric | 73 |
23 | VAN IMPE Kevin | 75 |
24 | VERBRUGGHE Rik | 70 |