Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 38
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Greipel
1
80 kgvan Poppel
2
82 kgBoonen
3
82 kgViviani
4
67 kgDrucker
5
75 kgDémare
6
76 kgGuardini
7
66 kgGroenewegen
8
70 kgGuarnieri
9
80 kgJans
10
68 kgModolo
11
67 kgvan Genechten
12
67 kgKuznetsov
13
70 kgSelig
14
80 kgCort
15
68 kgHofland
16
71 kgRojas
17
70 kgTurgot
18
73 kg
1
80 kgvan Poppel
2
82 kgBoonen
3
82 kgViviani
4
67 kgDrucker
5
75 kgDémare
6
76 kgGuardini
7
66 kgGroenewegen
8
70 kgGuarnieri
9
80 kgJans
10
68 kgModolo
11
67 kgvan Genechten
12
67 kgKuznetsov
13
70 kgSelig
14
80 kgCort
15
68 kgHofland
16
71 kgRojas
17
70 kgTurgot
18
73 kg
Weight (KG) →
Result →
82
66
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | GREIPEL André | 80 |
2 | VAN POPPEL Danny | 82 |
3 | BOONEN Tom | 82 |
4 | VIVIANI Elia | 67 |
5 | DRUCKER Jempy | 75 |
6 | DÉMARE Arnaud | 76 |
7 | GUARDINI Andrea | 66 |
8 | GROENEWEGEN Dylan | 70 |
9 | GUARNIERI Jacopo | 80 |
10 | JANS Roy | 68 |
11 | MODOLO Sacha | 67 |
12 | VAN GENECHTEN Jonas | 67 |
13 | KUZNETSOV Viacheslav | 70 |
14 | SELIG Rüdiger | 80 |
15 | CORT Magnus | 68 |
16 | HOFLAND Moreno | 71 |
17 | ROJAS José Joaquín | 70 |
18 | TURGOT Sébastien | 73 |