Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 17
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Sagan
1
78 kgDennis
2
72 kgGroenewegen
3
70 kgvan Emden
4
78 kgBouhanni
5
65 kgSütterlin
6
78 kgKittel
7
82 kgKelderman
8
65 kgBoasson Hagen
9
75 kgBrändle
10
80 kgKristoff
11
78 kgRoglič
12
65 kgNizzolo
13
72 kgPhinney
14
82 kgDémare
15
76 kgGuardini
16
66 kgDowsett
17
75 kgJans
18
68 kg
1
78 kgDennis
2
72 kgGroenewegen
3
70 kgvan Emden
4
78 kgBouhanni
5
65 kgSütterlin
6
78 kgKittel
7
82 kgKelderman
8
65 kgBoasson Hagen
9
75 kgBrändle
10
80 kgKristoff
11
78 kgRoglič
12
65 kgNizzolo
13
72 kgPhinney
14
82 kgDémare
15
76 kgGuardini
16
66 kgDowsett
17
75 kgJans
18
68 kg
Weight (KG) →
Result →
82
65
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | SAGAN Peter | 78 |
2 | DENNIS Rohan | 72 |
3 | GROENEWEGEN Dylan | 70 |
4 | VAN EMDEN Jos | 78 |
5 | BOUHANNI Nacer | 65 |
6 | SÜTTERLIN Jasha | 78 |
7 | KITTEL Marcel | 82 |
8 | KELDERMAN Wilco | 65 |
9 | BOASSON HAGEN Edvald | 75 |
10 | BRÄNDLE Matthias | 80 |
11 | KRISTOFF Alexander | 78 |
12 | ROGLIČ Primož | 65 |
13 | NIZZOLO Giacomo | 72 |
14 | PHINNEY Taylor | 82 |
15 | DÉMARE Arnaud | 76 |
16 | GUARDINI Andrea | 66 |
17 | DOWSETT Alex | 75 |
18 | JANS Roy | 68 |