Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 17
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Sagan
1
78 kgGroenewegen
2
70 kgBouhanni
3
65 kgKittel
4
82 kgDennis
5
72 kgNizzolo
6
72 kgKristoff
7
78 kgvan Emden
8
78 kgvan Poppel
9
82 kgSütterlin
10
78 kgKelderman
11
65 kgBoasson Hagen
12
75 kgBrändle
13
80 kgMcNally
14
72 kgRoglič
15
65 kgElmiger
16
73 kgPhinney
17
82 kgDémare
18
76 kgGuardini
19
66 kgGreipel
20
80 kgDowsett
21
75 kgJans
22
68 kg
1
78 kgGroenewegen
2
70 kgBouhanni
3
65 kgKittel
4
82 kgDennis
5
72 kgNizzolo
6
72 kgKristoff
7
78 kgvan Emden
8
78 kgvan Poppel
9
82 kgSütterlin
10
78 kgKelderman
11
65 kgBoasson Hagen
12
75 kgBrändle
13
80 kgMcNally
14
72 kgRoglič
15
65 kgElmiger
16
73 kgPhinney
17
82 kgDémare
18
76 kgGuardini
19
66 kgGreipel
20
80 kgDowsett
21
75 kgJans
22
68 kg
Weight (KG) →
Result →
82
65
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | SAGAN Peter | 78 |
2 | GROENEWEGEN Dylan | 70 |
3 | BOUHANNI Nacer | 65 |
4 | KITTEL Marcel | 82 |
5 | DENNIS Rohan | 72 |
6 | NIZZOLO Giacomo | 72 |
7 | KRISTOFF Alexander | 78 |
8 | VAN EMDEN Jos | 78 |
9 | VAN POPPEL Danny | 82 |
10 | SÜTTERLIN Jasha | 78 |
11 | KELDERMAN Wilco | 65 |
12 | BOASSON HAGEN Edvald | 75 |
13 | BRÄNDLE Matthias | 80 |
14 | MCNALLY Mark | 72 |
15 | ROGLIČ Primož | 65 |
16 | ELMIGER Martin | 73 |
17 | PHINNEY Taylor | 82 |
18 | DÉMARE Arnaud | 76 |
19 | GUARDINI Andrea | 66 |
20 | GREIPEL André | 80 |
21 | DOWSETT Alex | 75 |
22 | JANS Roy | 68 |