Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Küng
1
83 kgSagan
2
78 kgBodnar
3
77 kgBauhaus
4
75 kgDumoulin
5
69 kgCort
6
68 kgKragh Andersen
7
73 kgGroenewegen
8
70 kgBoom
9
75 kgvan Poppel
10
78 kgLampaert
11
75 kgZabel
12
81 kgBrändle
13
80 kgWippert
14
75 kgScotson
15
76 kgRickaert
16
88 kgWellens
17
71 kgGreipel
18
80 kgvan Emden
19
78 kgPlanckaert
20
71 kg
1
83 kgSagan
2
78 kgBodnar
3
77 kgBauhaus
4
75 kgDumoulin
5
69 kgCort
6
68 kgKragh Andersen
7
73 kgGroenewegen
8
70 kgBoom
9
75 kgvan Poppel
10
78 kgLampaert
11
75 kgZabel
12
81 kgBrändle
13
80 kgWippert
14
75 kgScotson
15
76 kgRickaert
16
88 kgWellens
17
71 kgGreipel
18
80 kgvan Emden
19
78 kgPlanckaert
20
71 kg
Weight (KG) →
Result →
88
68
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | KÜNG Stefan | 83 |
2 | SAGAN Peter | 78 |
3 | BODNAR Maciej | 77 |
4 | BAUHAUS Phil | 75 |
5 | DUMOULIN Tom | 69 |
6 | CORT Magnus | 68 |
7 | KRAGH ANDERSEN Søren | 73 |
8 | GROENEWEGEN Dylan | 70 |
9 | BOOM Lars | 75 |
10 | VAN POPPEL Boy | 78 |
11 | LAMPAERT Yves | 75 |
12 | ZABEL Rick | 81 |
13 | BRÄNDLE Matthias | 80 |
14 | WIPPERT Wouter | 75 |
15 | SCOTSON Miles | 76 |
16 | RICKAERT Jonas | 88 |
17 | WELLENS Tim | 71 |
18 | GREIPEL André | 80 |
19 | VAN EMDEN Jos | 78 |
20 | PLANCKAERT Edward | 71 |