Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 13
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Küng
1
83 kgJakobsen
2
78 kgCampenaerts
3
68 kgKittel
4
82 kgKragh Andersen
5
73 kgEwan
6
69 kgMatthews
7
72 kgHalvorsen
8
69 kgSchachmann
9
71 kgWalscheid
10
90 kgDowsett
11
75 kgGroenewegen
12
70 kgDurbridge
13
78 kgPelucchi
14
74 kgScotson
15
76 kgDupont
16
72 kgBodnar
17
77 kgStuyven
18
78 kgLampaert
19
75 kgMinali
20
74 kg
1
83 kgJakobsen
2
78 kgCampenaerts
3
68 kgKittel
4
82 kgKragh Andersen
5
73 kgEwan
6
69 kgMatthews
7
72 kgHalvorsen
8
69 kgSchachmann
9
71 kgWalscheid
10
90 kgDowsett
11
75 kgGroenewegen
12
70 kgDurbridge
13
78 kgPelucchi
14
74 kgScotson
15
76 kgDupont
16
72 kgBodnar
17
77 kgStuyven
18
78 kgLampaert
19
75 kgMinali
20
74 kg
Weight (KG) →
Result →
90
68
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | KÜNG Stefan | 83 |
2 | JAKOBSEN Fabio | 78 |
3 | CAMPENAERTS Victor | 68 |
4 | KITTEL Marcel | 82 |
5 | KRAGH ANDERSEN Søren | 73 |
6 | EWAN Caleb | 69 |
7 | MATTHEWS Michael | 72 |
8 | HALVORSEN Kristoffer | 69 |
9 | SCHACHMANN Maximilian | 71 |
10 | WALSCHEID Max | 90 |
11 | DOWSETT Alex | 75 |
12 | GROENEWEGEN Dylan | 70 |
13 | DURBRIDGE Luke | 78 |
14 | PELUCCHI Matteo | 74 |
15 | SCOTSON Miles | 76 |
16 | DUPONT Timothy | 72 |
17 | BODNAR Maciej | 77 |
18 | STUYVEN Jasper | 78 |
19 | LAMPAERT Yves | 75 |
20 | MINALI Riccardo | 74 |