Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 1
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Pedersen
1
70 kgPhilipsen
2
75 kgvan der Poel
3
75 kgvan Poppel
4
82 kgMerlier
5
76 kgNaesen
6
74 kgSénéchal
7
77 kgColbrelli
8
74 kgKragh Andersen
9
73 kgKüng
10
83 kgBissegger
11
78 kgŠtybar
12
68 kgClaeys
13
77 kgLampaert
14
75 kgLaporte
15
76 kgEekhoff
16
75 kgGarcía Cortina
17
77 kgDrucker
18
75 kgVanmarcke
19
77 kg
1
70 kgPhilipsen
2
75 kgvan der Poel
3
75 kgvan Poppel
4
82 kgMerlier
5
76 kgNaesen
6
74 kgSénéchal
7
77 kgColbrelli
8
74 kgKragh Andersen
9
73 kgKüng
10
83 kgBissegger
11
78 kgŠtybar
12
68 kgClaeys
13
77 kgLampaert
14
75 kgLaporte
15
76 kgEekhoff
16
75 kgGarcía Cortina
17
77 kgDrucker
18
75 kgVanmarcke
19
77 kg
Weight (KG) →
Result →
83
68
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | PEDERSEN Mads | 70 |
2 | PHILIPSEN Jasper | 75 |
3 | VAN DER POEL Mathieu | 75 |
4 | VAN POPPEL Danny | 82 |
5 | MERLIER Tim | 76 |
6 | NAESEN Oliver | 74 |
7 | SÉNÉCHAL Florian | 77 |
8 | COLBRELLI Sonny | 74 |
9 | KRAGH ANDERSEN Søren | 73 |
10 | KÜNG Stefan | 83 |
11 | BISSEGGER Stefan | 78 |
12 | ŠTYBAR Zdeněk | 68 |
13 | CLAEYS Dimitri | 77 |
14 | LAMPAERT Yves | 75 |
15 | LAPORTE Christophe | 76 |
16 | EEKHOFF Nils | 75 |
17 | GARCÍA CORTINA Iván | 77 |
18 | DRUCKER Jempy | 75 |
19 | VANMARCKE Sep | 77 |