Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 57
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Bissegger
1
78 kgMerlier
2
76 kgWalscheid
3
90 kgAffini
4
80 kgBauhaus
5
75 kgKüng
6
83 kgHodeg
7
76 kgLaporte
8
76 kgAsgreen
9
75 kgGaviria
10
71 kgvan Poppel
11
82 kgPedersen
12
76 kgDumoulin
13
69 kgKragh Andersen
14
73 kgCampenaerts
15
68 kgAniołkowski
16
68 kgTeunissen
17
73 kgMcNulty
18
69 kg
1
78 kgMerlier
2
76 kgWalscheid
3
90 kgAffini
4
80 kgBauhaus
5
75 kgKüng
6
83 kgHodeg
7
76 kgLaporte
8
76 kgAsgreen
9
75 kgGaviria
10
71 kgvan Poppel
11
82 kgPedersen
12
76 kgDumoulin
13
69 kgKragh Andersen
14
73 kgCampenaerts
15
68 kgAniołkowski
16
68 kgTeunissen
17
73 kgMcNulty
18
69 kg
Weight (KG) →
Result →
90
68
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | BISSEGGER Stefan | 78 |
2 | MERLIER Tim | 76 |
3 | WALSCHEID Max | 90 |
4 | AFFINI Edoardo | 80 |
5 | BAUHAUS Phil | 75 |
6 | KÜNG Stefan | 83 |
7 | HODEG Álvaro José | 76 |
8 | LAPORTE Christophe | 76 |
9 | ASGREEN Kasper | 75 |
10 | GAVIRIA Fernando | 71 |
11 | VAN POPPEL Danny | 82 |
12 | PEDERSEN Mads | 76 |
13 | DUMOULIN Tom | 69 |
14 | KRAGH ANDERSEN Søren | 73 |
15 | CAMPENAERTS Victor | 68 |
16 | ANIOŁKOWSKI Stanisław | 68 |
17 | TEUNISSEN Mike | 73 |
18 | MCNULTY Brandon | 69 |