Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -19.4 * weight + 1498
This means that on average for every extra kilogram weight a rider loses -19.4 positions in the result.
Tarling
1
78 kgPhilipsen
2
75 kgWellens
3
71 kgMerlier
4
76 kgLampaert
5
75 kgKooij
6
72 kgStuyven
7
78 kgDe Lie
8
78 kgVermeersch
9
81 kgGroenewegen
10
70 kgAsgreen
11
75 kgTrentin
12
74 kgHoole
13
81 kgPithie
14
74 kgBjerg
15
78 kgMarit
16
72 kgFoss
17
74 kgViviani
18
67 kgMohorič
19
71 kgRusso
20
74 kgLauk
991
69 kg
1
78 kgPhilipsen
2
75 kgWellens
3
71 kgMerlier
4
76 kgLampaert
5
75 kgKooij
6
72 kgStuyven
7
78 kgDe Lie
8
78 kgVermeersch
9
81 kgGroenewegen
10
70 kgAsgreen
11
75 kgTrentin
12
74 kgHoole
13
81 kgPithie
14
74 kgBjerg
15
78 kgMarit
16
72 kgFoss
17
74 kgViviani
18
67 kgMohorič
19
71 kgRusso
20
74 kgLauk
991
69 kg
Weight (KG) →
Result →
81
67
1
991
# | Rider | Weight (KG) |
---|---|---|
1 | TARLING Joshua | 78 |
2 | PHILIPSEN Jasper | 75 |
3 | WELLENS Tim | 71 |
4 | MERLIER Tim | 76 |
5 | LAMPAERT Yves | 75 |
6 | KOOIJ Olav | 72 |
7 | STUYVEN Jasper | 78 |
8 | DE LIE Arnaud | 78 |
9 | VERMEERSCH Florian | 81 |
10 | GROENEWEGEN Dylan | 70 |
11 | ASGREEN Kasper | 75 |
12 | TRENTIN Matteo | 74 |
13 | HOOLE Daan | 81 |
14 | PITHIE Laurence | 74 |
15 | BJERG Mikkel | 78 |
16 | MARIT Arne | 72 |
17 | FOSS Tobias | 74 |
18 | VIVIANI Elia | 67 |
19 | MOHORIČ Matej | 71 |
20 | RUSSO Clément | 74 |
991 | LAUK Karl Patrick | 69 |