Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -4.2 * weight + 360
This means that on average for every extra kilogram weight a rider loses -4.2 positions in the result.
Bittner
1
73 kgMerlier
2
76 kgKooij
3
72 kgGirmay
4
70 kgDe Lie
5
78 kgDehairs
6
82 kgvan der Poel
7
75 kgLaurance
8
63 kgGudmestad
9
82 kgWellens
10
71 kgde Kleijn
11
68 kgPenhoët
13
64 kgBettiol
14
69 kgGovekar
15
73 kgGroenewegen
16
70 kgWright
17
75 kgTeunissen
18
73 kgBallerini
19
71 kgVermeersch
20
68 kgCapiot
21
69 kgGaviria
22
71 kgAlbanese
23
70 kgFretin
991
70 kg
1
73 kgMerlier
2
76 kgKooij
3
72 kgGirmay
4
70 kgDe Lie
5
78 kgDehairs
6
82 kgvan der Poel
7
75 kgLaurance
8
63 kgGudmestad
9
82 kgWellens
10
71 kgde Kleijn
11
68 kgPenhoët
13
64 kgBettiol
14
69 kgGovekar
15
73 kgGroenewegen
16
70 kgWright
17
75 kgTeunissen
18
73 kgBallerini
19
71 kgVermeersch
20
68 kgCapiot
21
69 kgGaviria
22
71 kgAlbanese
23
70 kgFretin
991
70 kg
Weight (KG) →
Result →
82
63
1
991
# | Rider | Weight (KG) |
---|---|---|
1 | BITTNER Pavel | 73 |
2 | MERLIER Tim | 76 |
3 | KOOIJ Olav | 72 |
4 | GIRMAY Biniam | 70 |
5 | DE LIE Arnaud | 78 |
6 | DEHAIRS Simon | 82 |
7 | VAN DER POEL Mathieu | 75 |
8 | LAURANCE Axel | 63 |
9 | GUDMESTAD Tord | 82 |
10 | WELLENS Tim | 71 |
11 | DE KLEIJN Arvid | 68 |
13 | PENHOËT Paul | 64 |
14 | BETTIOL Alberto | 69 |
15 | GOVEKAR Matevž | 73 |
16 | GROENEWEGEN Dylan | 70 |
17 | WRIGHT Fred | 75 |
18 | TEUNISSEN Mike | 73 |
19 | BALLERINI Davide | 71 |
20 | VERMEERSCH Gianni | 68 |
21 | CAPIOT Amaury | 69 |
22 | GAVIRIA Fernando | 71 |
23 | ALBANESE Vincenzo | 70 |
991 | FRETIN Milan | 70 |