Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.6 * weight - 53
This means that on average for every extra kilogram weight a rider loses 1.6 positions in the result.
Loder
13
62 kgGérard
15
70 kgDupont
28
57 kgKriit
33
63 kgAntomarchi
37
70 kgFukushima
41
62 kgZonneveld
46
63 kgLampater
47
75 kgTashiro
48
54 kgDeignan
51
65 kgMorin
63
79 kgKux
73
74 kgReid
76
62 kgMangel
79
83 kgHelminen
84
74 kgHupond
95
65 kgBengsch
105
85 kgMainguenaud
118
68 kg
13
62 kgGérard
15
70 kgDupont
28
57 kgKriit
33
63 kgAntomarchi
37
70 kgFukushima
41
62 kgZonneveld
46
63 kgLampater
47
75 kgTashiro
48
54 kgDeignan
51
65 kgMorin
63
79 kgKux
73
74 kgReid
76
62 kgMangel
79
83 kgHelminen
84
74 kgHupond
95
65 kgBengsch
105
85 kgMainguenaud
118
68 kg
Weight (KG) →
Result →
85
54
13
118
# | Rider | Weight (KG) |
---|---|---|
13 | LODER Thierry | 62 |
15 | GÉRARD Arnaud | 70 |
28 | DUPONT Hubert | 57 |
33 | KRIIT Kalle | 63 |
37 | ANTOMARCHI Julien | 70 |
41 | FUKUSHIMA Shinichi | 62 |
46 | ZONNEVELD Thijs | 63 |
47 | LAMPATER Leif | 75 |
48 | TASHIRO Yasutaka | 54 |
51 | DEIGNAN Philip | 65 |
63 | MORIN Anthony | 79 |
73 | KUX Christian | 74 |
76 | REID Robin | 62 |
79 | MANGEL Laurent | 83 |
84 | HELMINEN Matti | 74 |
95 | HUPOND Thierry | 65 |
105 | BENGSCH Robert | 85 |
118 | MAINGUENAUD Frédéric | 68 |