Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 14
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Buffaz
6
64 kgMandri
10
66 kgClain
12
59 kgDupont
13
57 kgLaurent
16
72 kgDion
17
65 kgCalzati
18
68 kgHupond
19
65 kgJeandesboz
21
69 kgDessel
22
63 kgSalmon
27
60 kgSapa
29
82 kgDeignan
32
65 kgFuglsang
35
67 kgDumoulin
36
57 kgBonsergent
37
66 kgRinero
42
65 kgCusin
47
65 kg
6
64 kgMandri
10
66 kgClain
12
59 kgDupont
13
57 kgLaurent
16
72 kgDion
17
65 kgCalzati
18
68 kgHupond
19
65 kgJeandesboz
21
69 kgDessel
22
63 kgSalmon
27
60 kgSapa
29
82 kgDeignan
32
65 kgFuglsang
35
67 kgDumoulin
36
57 kgBonsergent
37
66 kgRinero
42
65 kgCusin
47
65 kg
Weight (KG) →
Result →
82
57
6
47
# | Rider | Weight (KG) |
---|---|---|
6 | BUFFAZ Mickaël | 64 |
10 | MANDRI René | 66 |
12 | CLAIN Médéric | 59 |
13 | DUPONT Hubert | 57 |
16 | LAURENT Christophe | 72 |
17 | DION Renaud | 65 |
18 | CALZATI Sylvain | 68 |
19 | HUPOND Thierry | 65 |
21 | JEANDESBOZ Fabrice | 69 |
22 | DESSEL Cyril | 63 |
27 | SALMON Benoît | 60 |
29 | SAPA Marcin | 82 |
32 | DEIGNAN Philip | 65 |
35 | FUGLSANG Jakob | 67 |
36 | DUMOULIN Samuel | 57 |
37 | BONSERGENT Stéphane | 66 |
42 | RINERO Christophe | 65 |
47 | CUSIN Rémi | 65 |