Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 14
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Buffaz
3
64 kgDumoulin
4
57 kgBonsergent
9
66 kgLaurent
10
72 kgMandri
11
66 kgCalzati
13
68 kgDupont
16
57 kgHupond
17
65 kgDion
21
65 kgSapa
26
82 kgDessel
27
63 kgClain
32
59 kgDeignan
36
65 kgSalmon
38
60 kgJeandesboz
39
69 kgRinero
42
65 kgFuglsang
46
67 kgCusin
55
65 kg
3
64 kgDumoulin
4
57 kgBonsergent
9
66 kgLaurent
10
72 kgMandri
11
66 kgCalzati
13
68 kgDupont
16
57 kgHupond
17
65 kgDion
21
65 kgSapa
26
82 kgDessel
27
63 kgClain
32
59 kgDeignan
36
65 kgSalmon
38
60 kgJeandesboz
39
69 kgRinero
42
65 kgFuglsang
46
67 kgCusin
55
65 kg
Weight (KG) →
Result →
82
57
3
55
# | Rider | Weight (KG) |
---|---|---|
3 | BUFFAZ Mickaël | 64 |
4 | DUMOULIN Samuel | 57 |
9 | BONSERGENT Stéphane | 66 |
10 | LAURENT Christophe | 72 |
11 | MANDRI René | 66 |
13 | CALZATI Sylvain | 68 |
16 | DUPONT Hubert | 57 |
17 | HUPOND Thierry | 65 |
21 | DION Renaud | 65 |
26 | SAPA Marcin | 82 |
27 | DESSEL Cyril | 63 |
32 | CLAIN Médéric | 59 |
36 | DEIGNAN Philip | 65 |
38 | SALMON Benoît | 60 |
39 | JEANDESBOZ Fabrice | 69 |
42 | RINERO Christophe | 65 |
46 | FUGLSANG Jakob | 67 |
55 | CUSIN Rémi | 65 |