Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Huguet
1
66 kgVogondy
2
62 kgEdet
4
60 kgBouet
5
67 kgJohansen
6
78 kgBérard
8
70 kgLaurent
9
72 kgCusin
11
65 kgDidier
23
68 kgFirsanov
24
58 kgChaigneau
29
80 kgChristensen
30
69 kgPinot
34
63 kgWilmann
36
69 kgFumeaux
37
61 kgSerry
39
66 kgKneisky
41
68 kgDhaene
42
73 kg
1
66 kgVogondy
2
62 kgEdet
4
60 kgBouet
5
67 kgJohansen
6
78 kgBérard
8
70 kgLaurent
9
72 kgCusin
11
65 kgDidier
23
68 kgFirsanov
24
58 kgChaigneau
29
80 kgChristensen
30
69 kgPinot
34
63 kgWilmann
36
69 kgFumeaux
37
61 kgSerry
39
66 kgKneisky
41
68 kgDhaene
42
73 kg
Weight (KG) →
Result →
80
58
1
42
# | Rider | Weight (KG) |
---|---|---|
1 | HUGUET Yann | 66 |
2 | VOGONDY Nicolas | 62 |
4 | EDET Nicolas | 60 |
5 | BOUET Maxime | 67 |
6 | JOHANSEN Allan | 78 |
8 | BÉRARD Julien | 70 |
9 | LAURENT Christophe | 72 |
11 | CUSIN Rémi | 65 |
23 | DIDIER Laurent | 68 |
24 | FIRSANOV Sergey | 58 |
29 | CHAIGNEAU Robin | 80 |
30 | CHRISTENSEN Mads | 69 |
34 | PINOT Thibaut | 63 |
36 | WILMANN Frederik | 69 |
37 | FUMEAUX Jonathan | 61 |
39 | SERRY Pieter | 66 |
41 | KNEISKY Morgan | 68 |
42 | DHAENE Brecht | 73 |