Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 8
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Oomen
1
65 kgPower
2
68 kgGroßschartner
3
64 kgMüller
4
74 kgMühlberger
5
64 kgSchultz
6
68 kgPeters
7
72 kgBax
9
78 kgGogl
11
71 kgFerasse
12
61 kgBarta
13
61 kgFrankiny
14
67 kgRusso
15
74 kgMaison
16
61 kgDenz
17
71 kgHofstede
22
73 kgBaillifard
23
54 kgSellier
25
68 kgMaas
26
70 kgHofstetter
29
66 kgThevenot
30
69 kgEdmondson
35
75 kg
1
65 kgPower
2
68 kgGroßschartner
3
64 kgMüller
4
74 kgMühlberger
5
64 kgSchultz
6
68 kgPeters
7
72 kgBax
9
78 kgGogl
11
71 kgFerasse
12
61 kgBarta
13
61 kgFrankiny
14
67 kgRusso
15
74 kgMaison
16
61 kgDenz
17
71 kgHofstede
22
73 kgBaillifard
23
54 kgSellier
25
68 kgMaas
26
70 kgHofstetter
29
66 kgThevenot
30
69 kgEdmondson
35
75 kg
Weight (KG) →
Result →
78
54
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | OOMEN Sam | 65 |
2 | POWER Robert | 68 |
3 | GROßSCHARTNER Felix | 64 |
4 | MÜLLER Patrick | 74 |
5 | MÜHLBERGER Gregor | 64 |
6 | SCHULTZ Nick | 68 |
7 | PETERS Nans | 72 |
9 | BAX Sjoerd | 78 |
11 | GOGL Michael | 71 |
12 | FERASSE Thibault | 61 |
13 | BARTA Will | 61 |
14 | FRANKINY Kilian | 67 |
15 | RUSSO Clément | 74 |
16 | MAISON Jérémy | 61 |
17 | DENZ Nico | 71 |
22 | HOFSTEDE Lennard | 73 |
23 | BAILLIFARD Valentin | 54 |
25 | SELLIER Simon | 68 |
26 | MAAS Jan | 70 |
29 | HOFSTETTER Hugo | 66 |
30 | THEVENOT Guillaume | 69 |
35 | EDMONDSON Alex | 75 |