Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 44
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Hofstede
1
73 kgCosta
2
61 kgCosnefroy
3
65 kgBudding
4
74 kgPeters
5
72 kgGodon
6
74 kgAranburu
7
63 kgMas
8
61 kgParedes
9
66 kgZahiri
11
57 kgSchlegel
12
72 kgMolly
16
61 kgRusso
17
74 kgTurgis
20
70 kgOlaberria
21
61 kgJurado
26
68 kgLehner
29
63 kgAguirre
30
55 kgTivani
31
67 kgSchinnagel
34
68 kg
1
73 kgCosta
2
61 kgCosnefroy
3
65 kgBudding
4
74 kgPeters
5
72 kgGodon
6
74 kgAranburu
7
63 kgMas
8
61 kgParedes
9
66 kgZahiri
11
57 kgSchlegel
12
72 kgMolly
16
61 kgRusso
17
74 kgTurgis
20
70 kgOlaberria
21
61 kgJurado
26
68 kgLehner
29
63 kgAguirre
30
55 kgTivani
31
67 kgSchinnagel
34
68 kg
Weight (KG) →
Result →
74
55
1
34
# | Rider | Weight (KG) |
---|---|---|
1 | HOFSTEDE Lennard | 73 |
2 | COSTA Adrien | 61 |
3 | COSNEFROY Benoît | 65 |
4 | BUDDING Martijn | 74 |
5 | PETERS Nans | 72 |
6 | GODON Dorian | 74 |
7 | ARANBURU Alex | 63 |
8 | MAS Enric | 61 |
9 | PAREDES Wilmar | 66 |
11 | ZAHIRI Abderrahim | 57 |
12 | SCHLEGEL Michal | 72 |
16 | MOLLY Kenny | 61 |
17 | RUSSO Clément | 74 |
20 | TURGIS Anthony | 70 |
21 | OLABERRIA Pello | 61 |
26 | JURADO Christofer Robín | 68 |
29 | LEHNER Daniel | 63 |
30 | AGUIRRE Hernán Ricardo | 55 |
31 | TIVANI German Nicolás | 67 |
34 | SCHINNAGEL Johannes | 68 |