Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Sunderland
2
67 kgBowden
3
65 kgMadrazo
5
61 kgHarper
7
67 kgCarisey
8
74 kgAmezqueta
9
63 kgLarsen
10
74 kgDe Rossi
12
70 kgRaibaud
13
59 kgMihaylov
14
70 kgFiné
16
70 kgAntonini
17
75 kgBouchard
18
63 kgIrisarri
19
66 kgDi Sante
20
62 kgRabitsch
21
69 kgGrošelj
22
62 kgBanzer
23
56 kg
2
67 kgBowden
3
65 kgMadrazo
5
61 kgHarper
7
67 kgCarisey
8
74 kgAmezqueta
9
63 kgLarsen
10
74 kgDe Rossi
12
70 kgRaibaud
13
59 kgMihaylov
14
70 kgFiné
16
70 kgAntonini
17
75 kgBouchard
18
63 kgIrisarri
19
66 kgDi Sante
20
62 kgRabitsch
21
69 kgGrošelj
22
62 kgBanzer
23
56 kg
Weight (KG) →
Result →
75
56
2
23
# | Rider | Weight (KG) |
---|---|---|
2 | SUNDERLAND Dylan | 67 |
3 | BOWDEN Scott | 65 |
5 | MADRAZO Ángel | 61 |
7 | HARPER Chris | 67 |
8 | CARISEY Clément | 74 |
9 | AMEZQUETA Julen | 63 |
10 | LARSEN Niklas | 74 |
12 | DE ROSSI Lucas | 70 |
13 | RAIBAUD Jimmy | 59 |
14 | MIHAYLOV Nikolay | 70 |
16 | FINÉ Eddy | 70 |
17 | ANTONINI Simone | 75 |
18 | BOUCHARD Geoffrey | 63 |
19 | IRISARRI Jon | 66 |
20 | DI SANTE Antonio | 62 |
21 | RABITSCH Stephan | 69 |
22 | GROŠELJ Žiga | 62 |
23 | BANZER Gordian | 56 |