Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 23
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Krizek
1
74 kgImhof
3
80 kgPearson
4
53 kgBax
5
78 kgBárta
6
75 kgAndersen
7
56 kgZoccarato
8
74 kgProdhomme
9
63 kgKneisky
10
68 kgPozdnyakov
11
67 kgvan den Dool
12
68 kgAmezqueta
13
63 kgGerts
14
71 kgSweeny
16
75 kgde Lange
17
58 kgKrul
18
68 kgMinnaard
19
65 kgLisson
20
73 kgOtruba
21
75 kgJorgenson
22
69 kgLeclainche
23
65 kgDelettre
24
62 kg
1
74 kgImhof
3
80 kgPearson
4
53 kgBax
5
78 kgBárta
6
75 kgAndersen
7
56 kgZoccarato
8
74 kgProdhomme
9
63 kgKneisky
10
68 kgPozdnyakov
11
67 kgvan den Dool
12
68 kgAmezqueta
13
63 kgGerts
14
71 kgSweeny
16
75 kgde Lange
17
58 kgKrul
18
68 kgMinnaard
19
65 kgLisson
20
73 kgOtruba
21
75 kgJorgenson
22
69 kgLeclainche
23
65 kgDelettre
24
62 kg
Weight (KG) →
Result →
80
53
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | KRIZEK Matthias | 74 |
3 | IMHOF Claudio | 80 |
4 | PEARSON Daniel | 53 |
5 | BAX Sjoerd | 78 |
6 | BÁRTA Jan | 75 |
7 | ANDERSEN Sander | 56 |
8 | ZOCCARATO Samuele | 74 |
9 | PRODHOMME Nicolas | 63 |
10 | KNEISKY Morgan | 68 |
11 | POZDNYAKOV Kirill | 67 |
12 | VAN DEN DOOL Jens | 68 |
13 | AMEZQUETA Julen | 63 |
14 | GERTS Floris | 71 |
16 | SWEENY Harry | 75 |
17 | DE LANGE Thijs | 58 |
18 | KRUL Stef | 68 |
19 | MINNAARD Marco | 65 |
20 | LISSON Christoffer | 73 |
21 | OTRUBA Jakub | 75 |
22 | JORGENSON Matteo | 69 |
23 | LECLAINCHE Gwen | 65 |
24 | DELETTRE Alexandre | 62 |